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Abstract

Schizophrenia genome-wide association studies (GWAS) have reported many genomic risk loci, but it is unclear how they affect
schizophrenia susceptibility through interactions of multiple SNPs. We propose a stepwise deep learning technique with multi-precision
data (SLEM) to explore the SNP combination effects on schizophrenia through intermediate molecular and cellular functions. The SLEM
technique utilizes two levels of precision data for learning. It constructs initial backbone networks with more precise but small amount
of multilevel assay data. Then, it learns strengths of intermediate interactions with the less precise but massive amount of GWAS data.
The learned networks facilitate identifying effective SNP interactions from the intractably large space of all possible SNP combinations.
We have shown that the extracted SNP combinations show higher accuracy than any single SNPs and preserve the accuracy in an
independent dataset. The learned networks also provide interpretations of molecular and cellular interactions of SNP combinations
toward schizophrenia etiology.
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INTRODUCTION
Schizophrenia (SCZ) is a serious psychiatric disease characterized
by various psychotic episodes. The most common symptoms
of schizophrenia are illusions, hallucinations and disorganized
thinking [1]. Due to its symptoms, patients fail to recognize what
is real and it leads them to unwanted dangerous behaviors such
as suicide and crimes. Though there have been many efforts to
understand the pathology of schizophrenia, only synaptic and
macro-scale natures have been discovered, and its etiology is
poorly understood. It has been shown that both environmental
and genetic factors are associated with schizophrenia by recent
studies. These studies report that maternal risks during preg-
nancy such as infection and nutritional deficiencies can con-
tribute as environmental factors, and the polygenic effect of
many genetic variants can involve as genetic factors [1]. A recent
study discovered schizophrenia risk in 31 524 Danish twins and
it estimated that the heritability of schizophrenia is 79% [2]. It
reveals that schizophrenia is a highly heritable disease and it also
supports that finding genetic factors is essential to understand
schizophrenia.

To find genetic risk factors of schizophrenia, many groups per-
formed genome-wide association studies (GWAS) using various

genotyping methods and cohorts. Psychiatric Genomics Consor-
tium (PGC) collected these GWAS data including over 36 000 cases
and 110 000 controls and performed meta-GWAS analysis using
these data [3]. From this study, PGC found 108 schizophrenia risk
loci. Also, a group in UK integrated PGC data and UK schizophrenia
samples and they found a total of 145 schizophrenia risk loci from
meta-GWAS analysis [4]. However, it is hard to predict schizophre-
nia susceptibility with these risk loci because their effect sizes
are small due to their polygenic nature. In a polygenic disease
including schizophrenia, it is highly demanding to identify multi-
SNP effects to find reliable susceptibility markers and understand
the pathology [5].

There have been many studies to understand multi-SNP effects
but they faced two challenges: exponentially huge search space
and limited biological interpretability. Conventional GWAS studies
cover 105 ∼ 106 SNPs so there are 1010 ∼ 1012 pairs even if we
consider only pairs of SNPs. In the computational aspect, the
identification of effective multiple SNPs fall into an unmanage-
able combinatorial search problem. Early studies employed brute-
force approaches such as multifactor dimensionality reduction or
heuristic-based greedy search algorithms [6, 7]. These methods
suffer from the trade-off between search breadth and depth. The
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other challenge, limited biological interpretability comes from
the statistical nature of the GWAS principle itself. Recent studies
adopted discriminative pattern mining or differential evolution
algorithm to avoid the search space problem and they found
significant higher-order multi-SNP effects from large genome-
wide datasets [8, 9]. However, these studies provided only
‘statistical’ multi-SNP effects like all other previous studies. They
did not provide how SNPs interact with each other or how multi-
SNPs affect the phenotype. Therefore, the knowledge underlying
multi-SNP effects is still a closed book.

Recently, researchers have tried to apply machine learning to
discover underlying knowledge between genotypes and pheno-
types by using a concept of visible neural network (VNN) [10].
The authors constructed the architecture of the VNN model with
GO ontology and mapped biological roles. Then, the model was
trained with a public compendium of yeast growth experimental
data. The trained VNN model not only reproduces the output of
the system but also provides mediators between genotypes and
phenotypes. Though this study shows that deep learning could
provide interpretability as well as a prediction in the genotype–
phenotype analysis, it cannot be applied to the schizophrenia
etiology analysis where a comprehensive and reliable knowledge
framework such as GO ontology is not available. After this study,
there have been a few efforts to construct interpretable neu-
ral network model for human diseases [11–13]. They suggested
interpretable models for human diseases but have limitations.
High performance models were partially black-box so they are
not fully interpretable. Also, these methods only included SNP-
gene and gene regulatory interactions so they cannot reflect
multilevel nature of biological processes. To overcome this, we
chose another approach that utilizes high-precision experiment
data for initializing the backbone architecture of deep learning.

In this study, we propose a stepwise deep learning technique
with multi-precision data (SLEM) to discover multi-SNP effects
of schizophrenia etiology and interpret these effects. SLEM pro-
vides an interpretable neural network for schizophrenia in two
steps: determination of model architecture using precise multi-
level data, and training the architecture using large public GWAS
data. Then, we reduced the search space for multi-SNP effects by
utilizing information from the acquired SLEM model. Identified
SNP combinations can predict schizophrenia patients much bet-
ter than any single SNPs. Their prediction powers are preserved
even if the dataset is changed. We suggest a mechanistic model
which could explain how multiple SNPs affect schizophrenia by
interpreting the SLEM model. It suggests that four regulatory SNPs
constitute a cooperative module to alter the neural cell growth by
inducing multiple biological processes including CaMK and BDNF-
TrkB pathways.

METHODS AND MATERIALS
Overview of SLEM
The proposed SLEM technique consists of two steps: the
determination of network architecture and the training (Figure 1).
First, nodes for each layer were selected from precise multilevel
data (Figure 1A). It is assumed that the precise multilevel data
are reflecting the scope and domain of the study. We calculated
association scores between schizophrenia risk SNPs and each
multilevel feature, and only significantly associated features were
chosen as nodes. The connectivity between nodes is determined
based on pairwise associations between the adjacent layers
(Figure 1A). Only statistically significant connections remain
and the other connections are discarded. After the model is

initialized, the model proceeds into the training step using the
backpropagation algorithm with over 7300 end-to-end (genotype–
phenotype) schizophrenia GWAS samples in dbGaP (Figure 1B)
[14]. The large training dataset is divided into training and test
sets to evaluate the performance of SLEM model by 10-fold cross
validation.

Architecture of interpretable neural networks
with SLEM
Interpretable neural networks with the proposed SLEM technique
have five layers including an input and a single-node output layer.
We selected 138 schizophrenia risk SNPs from previous meta-
GWAS analysis and used them as input nodes of the model. In the
previous article [4], there are 145 schizophrenia risk loci including
findings from PGC [3] but we selected 138 representative SNPs
and discarded 7 indel loci, which show low accuracy in variant
calling. Also, we determined that the former layers simulate
micro-scale processes and the latter layers reflect macro-scale
processes because biological signals are sent from micro-scale
to macro-scale processes. Considering data availability, we set
three intermediate layers for transcript isoforms, protein markers
and cellular phenotypes, respectively. We used transcript isoforms
instead of genes because a recent study reported that isoform-
specific expression has an essential role in schizophrenia pathol-
ogy [15].

Stanley Medical Research Institute dataset for
the first step of SLEM
We employed Neuropathology consortium (NC) collection of
the Stanley Neuropathology Consortium Integrative Database
(SNCID) for the first step of SLEM [16]. The NC collection
consists of postmortem brain samples of 15 each diagnosed
with schizophrenia, bipolar disorder or major depression and
unaffected control. For each sample, there are whole genome
sequencing (WGS) data, multi-tissue RNA-sequencing data (RNA-
seq) and neuropathological experiments data including over
4000 traits. We focused on frontal cortex, which has the richest
schizophrenia omics data in SNCID and has known to be closely
related to schizophrenia. Among 60 samples, we selected 57
samples that have all three types of data. We treated them as
15 cases versus 42 controls for tasks for finding associations with
schizophrenia.

We extracted the genotype profile from WGS data. For each
sample, raw genome sequence data (FASTQ) is aligned to the
GRCh37 reference genome by using the HISAT2 aligner [17].
Schizophrenia risk loci profile is called from sequence aligned
map by the BCFtools software [18]. The profile of 138 risk SNPs is
gathered for all 57 samples from this procedure. We analyzed the
isoform expression profile from RNA-seq data. We quantified the
isoform-level expression of every sample by using the Salmon
software [19]. Among over 190 000 isoforms in GRCh37, we
removed low expressed isoforms and selected 57 404 isoforms.
We gathered protein marker and cellular phenotype profiles from
neuropathological experiment data. We removed experiments
with too many missing values (>25% missing) and prepared 887
experimental features for every sample.

Selection of intermediate nodes based on
associations with risk SNPs
There are three intermediate layers for isoforms, protein
markers and cellular phenotypes in the SLEM model. Each layer
should have nodes that represent the essential components
of schizophrenia etiology. We performed an eQTL analysis to
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Figure 1: Overview of SLEM. The SLEM trains the interpretable neural network model from multi-precision datasets, precise multilevel data and large
end-to-end data. SLEM consists of two steps. (A) Determination scheme of network architecture. Nodes for each intermediate layer are selected from
precise multilevel SCZ data. Schizophrenia risk SNPs from previous meta-GWAS analysis are selected as input nodes. Transcript isoforms, protein
markers and cellular phenotypes having significant association to risk SNPs compose the 1st, 2nd and 3rd intermediate layers, respectively. The initial
connectivity between edges is determined by the association significance (P-value) between nodes in the adjacent layers. Only significant node pairs
have connections and the others are discarded. (B) Training procedure of the neural network with large end-to-end data. After determining
architecture of the model, the model is trained by the backpropagation algorithm with training and test sets from large end-to-end GWAS datasets.
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find significant isoforms for the 1st layer. We prepared the
schizophrenia risk SNP profile and the isoform expression profile
from the SNCID dataset. We extracted significant SNP-isoform
associations using the linear model in the QTLtools software
[20]. We adjusted eQTL associations with age, sex, disease profile
and 15 PEER factors (hidden confounders in expression data)
[21]. From SNP-isoform associations, we selected isoforms that
have FDR adjusted P-value < 0.1. In eQTL analysis, we tested over
9000 000 times (138 risk SNPs versus >70 000 transcripts) with
only 57 samples, so the statistical significance of associations is
relatively low, so we chose the threshold as 0.1, instead of 0.05.
As a result, we found 67 significant isoforms associated with
schizophrenia risk SNPs and used them as nodes of the 1st layer.

We also performed statistical association studies to find signif-
icant protein markers and cellular phenotypes for the 2nd and 3rd
layers. From schizophrenia risk SNP profile and neuropathological
experiment data, we identified significant SNP-protein marker
and SNP-cellular phenotype associations using a generalized lin-
ear model in the plink2 software [22]. Then, we adjusted associa-
tions with age, sex and disease profile. We selected markers and
phenotypes that have FDR adjusted P-value < 0.05 and identified
42 significant protein markers and 19 significant cellular pheno-
types associated with schizophrenia risk SNPs.

Determination of the connectivity of edges
between layers
To determine the connectivity between layers, we extracted pair-
wise associations between nodes in adjacent layers and computed
initial weights for the training based on their statistical signifi-
cance (P-value). For each node pair from two adjacent layers, we
computed the P-value between nodes and converted it into its
corresponding weight from Xavier normal distribution, which is
widely used for neural network initialization. And the sign of the
weight is determined based on whether the association is positive
or negative (Supplementary Figure S1).

For SNP-isoform edges, we used nominal P-value from eQTL
analysis of the preceding section as statistical significance. We
computed nominal P-values for all pairs between 138 input risk
SNPs and 67 isoform nodes. Then, we converted these P-values
into Xavier-distributed weights by inverse transform and selected
positive or negative weights based on the slope value of the eQTL
linear model. For isoform-marker and marker-phenotype edges,
we performed the robust nonparametric correlation test, Kendall
rank correlation test [23] to find associations and their statisti-
cal significances because many features in the neuropatholog-
ical experiment dataset are not normally distributed. Then, P-
values are transformed into Xavier-distributed weights and signs
of weights are determined by signs of Kendall coefficients. Also,
the phenotype-schizophrenia edges are initialized with Xavier
normal distribution.

From these initial weights, only the top 35% of edges (based
on absolute value) in each layer are used for the training step
and the rest of the edges are masked as 0 and discarded because
weak associations may affect the training procedure and lead the
model to same optima with randomly initialized models if they
are not properly masked. A total of 19 edges between phenotypes
and schizophrenia are initialized by Xavier initialization because
they do not have initial weight information.

Preparation of training and test datasets for the
second step of SLEM
We prepared three dbGaP schizophrenia datasets11 (phs000021.
v3.p2, phs000167.v1.p1, phs000448.v1.p1) for SLEM training and

the evaluation. These datasets are end-to-end datasets that only
contain genotype data as features and schizophrenia diagnosis
as a label. Unlike the SNCID dataset, genotype data in dbGaP
datasets are SNP array data so datasets cover only ∼10% of
selected schizophrenia risk SNPs. To solve this problem, we
performed the SNP imputation procedure to dbGaP SNP array
datasets.

The SNP imputation procedure is the pipeline to extract geno-
types of unknown SNPs based on partially known genotypes and
haplotype information. First, we converted genomic coordinates
of datasets from GRCh36 into GRCh37 by using LiftOver soft-
ware [24]. Then, we inferred haplotypes of every sample using
SHAPEIT phasing software and 1000 Genome Project haplotype
reference [25, 26]. Lastly, we extracted the genotype profile of 138
schizophrenia risk SNPs from prephased haplotype information
using the IMPUTEv2 software [27]. Extracted genotypes are coded
into 0 (homozygous reference allele), 1 (heterozygous), 2 (homozy-
gous alternative allele) based on SNP additive model assumption.

Model implementation and training
We implemented the SLEM model using the Keras library [28].
The model receives 138 genotype profiles as vectors and predicts
whether each sample is schizophrenia patients or not by using a
sigmoid classifier in the last layer. Also, we constructed the model
to predict the on–off status of 67 isoforms, 42 protein markers and
19 cellular phenotypes applying values from the previous layer to
the hyperbolic tangent activation function. Edges between layers
are initialized by initial weights from the preceding section and
insignificant edges are masked in the training step.

We trained the SLEM model with the dbGaP schizophrenia
datasets [14] using the backpropagation algorithm with the ADAM
optimizer [29]. To find optimal training hyperparameters, we eval-
uated accuracies from 10-fold cross-validation varying learning
rate, batch size and the number of epochs. From hyperparameter
tuning, we determined 0.005 learning rate, 250 batch size and 750
epochs as optimal hyperparameters and trained and evaluated
the SLEM model with these hyperparameters.

To examine the reliability of the SLEM model, we compared the
overall accuracy of the SLEM model and a conventional neural
network model with fully connected edges. The latter has the
same number of layers and nodes as the SLEM model, but has
12 877 edges for full connection. Each node in the fully connected
model plays a role of computational transfer function without
any biological label. Note that the proposed SLEM model has only
1192 edges after aforementioned selections, and each node has an
explicit biological label.

RESULTS
Prediction accuracy evaluation for model
reliability
We measured the average AUROC of 100 trained models for each
of both models. The AUROC of the SLEM model marks 0.7502 and
that of the fully connected model is 0.7348. The result shows that
the SLEM model has higher performance than the fully connected
network. It implies that the SLEM model has acceptable amount
of information contents and organized structures to discriminate
schizophrenia patients, and maintains biological interpretability.

A suggested mediator pathway module for
neuronal cell growth
We extracted a mediator pathway module for neuronal cell
growth by projecting the whole trained SLEM network into
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Figure 2: A neuronal growth model discovered from SLEM and literature validation of each association. Numbers around edges are weights of
associations. We searched and found literature evidence of each edge (solid line), database annotation (dashed line), and protein domain interaction
(dash-dotted line).

neuronal cell growth phenotypes, which has been known to be
an essential biological aspect of schizophrenia etiology (Figure 2).
To extract mediator pathways, we left only top 10% absolute
weights in trained SLEM model because there are too many
weak edges. Then, we collected all nodes and edges that are
connected to neuronal cell phenotypes (neuronal cell size and
density).

In our literature survey, we found three genes in the isoform
layer of models have schizophrenia-related reports (cytochrome
P450 2D6 (CYP2D6), WNT5A, CD46). Four genes or proteins in
our models (calcium/calmodulin dependent protein kinase 2
(CaMK2), tropomyosin receptor kinase B (TrkB), WNT5A, HRAS)
were reported to play essential roles in BDNF-TrkB and WNT
signaling pathways that modulate neuronal growth, neuronal
proliferation and synaptic plasticity (Supplementary Table S1)
[30–32].

We have found that 90% of edges in the suggested module have
their supporting evidences from independent information sources
(Figure 2). We examined literature and database annotations
including GO, KEGG and Reactome. We expanded the search
space of protein–protein interactions (PPI) to structural family
proteins (Pfam), which includes domain-level interactions.
Considering insufficient knowledge status on schizophrenia
etiology, it is inspiring that 90% of edges in the machine-
learned models have supporting evidences from independent
knowledge sources (Supplementary Table S2). We expect that
the mediator pathway module by SLEM illustrate the neu-
rodevelopmental aspect of schizophrenia in a mechanistic
way.

Identification of SNP combinations from the
SLEM model
We evaluated an individual impact score of each SNP on the
SLEM model. In each node, we assumed that active inputs are
combined in additive manner and the output is proportional to
output weight wo. We defined relationship between active inputs
(i1, . . . , in) and the output of a node k (Ok) as the following
equation:

Ok = wk

n∑

1

ij (1)

The impact score of each SNP is defined as the sum of inputs
to schizophrenia node and it can be represented by iteration
of Equation (1). Since Equation (1) is linear combination so the
impact score is equivalent to Equation (2) that the sum of products
of edges in all possible path from the SNP to schizophrenia
(Figure 3A). We used the absolute value to evaluate the magnitude
of impact.

I_score (SNPi) =
∣∣∣∣
∑paths

k
product of edges in pathk

∣∣∣∣ (2)

Based on the impact score, we selected the five highest impact
SNPs (Supplementary Table S3). Then, we selected SNP com-
binations by evaluating the prediction power of every possible
combination of the five highest impact SNPs (Figure 3B). Since an
SNP combination is a far stricter condition than a single SNP, it
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Figure 3: Selection of high impact SNP combinations from the SLEM model. (A) An individual impact score of each SNP is defined as the sum of
weights in all possible paths from the SNP to schizophrenia. (B) Effective SNP combinations are selected from all possible combinations from the top
five high impact SNPs. SNP combinations with high precision (precision > 0.6) with statistical significance (P-value < 0.05) on all samples in the GAIN
dataset are chosen as effective schizophrenia SNP combinations. In the table, A, B, C, D and E refer to labels of the five highest impact SNPs in the
model, and 0, 1 and 2 indicate homozygous reference, heterozygous and homozygous alternative allele, respectively. For example, A0B1C2 is a
combination that SNP A is homozygous reference, SNP B is heterozygous and SNP C is homozygous alternative in one sample.

is straightforward that the recall of an SNP combination is lower
than that of a single SNP. Therefore, we measured the precision
that each SNP combination discriminates schizophrenia patients
in the public GWAS dataset [Genetic Association Information
Network (GAIN) dataset: phs000021.v3.p2, phs000167.v1.p1]. We
also performed hypergeometric test to check statistical signif-
icance of predictions. We used all single SNPs used for SLEM
as a control group and measured precisions (the indicator of
prediction power; a number of patients with a marker / a number
of all people who have a marker) and hypergeometric P-values.
As reliable schizophrenia SNP combinations, we selected SNP
combinations that satisfy high prediction power (precision > 0.6)
with statistical significance (P-value < 0.05) (Table 1). From these
criteria, we can consider that not all schizophrenia patients have
these SNP combinations but people who have these combina-
tions may have high schizophrenia susceptibility and also these
multi-SNP effects can be found regardless of the dataset varia-
tion. It implies that the SLEM model properly reflects the poly-
genic nature of schizophrenia and provides powerful indicators of
schizophrenia.

We evaluated performances in independent test dataset
[Hebrew University Genetic Resource (HUGR) dataset: phs000448.
v1.p1] to compare performances of SNP combinations and
single SNPs. The SNP combinations from SLEM models show
higher and more robust performance than single GWAS SNPs.
The single SNPs that have the highest precision show 0.545
in the GAIN training dataset and 0.375 HUGR test datasets
(Table 1). Also, the minimum precision difference between
the two datasets is 0.140. It implies that even a confirmed
single SNP from the meta-GWAS analysis cannot discriminate
schizophrenia patients by itself and also cannot guarantee
robustness in independent datasets. On the contrary, the best

SNP combination shows over 60% precisions in both datasets.
The scatter plot visualizes this difference between single SNPs
and SNP combinations (Figure 4). Single SNPs are located on
the lower side of the figure and it indicates that they have low
precisions in HUGR datasets. However, SNP combinations are
close to the identity line in the middle and it implies that they
have similar precisions in both datasets. It clearly illustrates per-
formance and robustness of SNP combinations as schizophrenia
markers.

Suggested multi-SNP effects on schizophrenia
We suggest multi-SNP combinational effects on schizophrenia
depicted in Figure 5. The combination model is extracted from the
whole SLEM networks by selecting connecting paths originated
from the most effective SNP combination, which is selected from
the aforementioned screening. The machine-learned connections
in the suggested model provide guidance to examine the corre-
sponding literature annotations.

We found that two SNPs (rs11576952 and rs9655340) are
located in the noncoding regions so they are distant from
exons. Thus, they have trans-eQTL associations with isoforms
so they may regulate mRNA expressions through intermediary
factors. Remaining one, rs3735025, is located in exon of gene
diacylglycerol kinase iota (DGKI). DGKI and connected gene
OCRL are both involved in Phosphatidylinositol signaling system
(KEGG:04070) so rs3735025 may affect OCRL by lipid modification
signaling via DGKI. The mRNA expressions are determined by
combined regulatory effects of all three SNPs. In the isoform
layer, isoforms may affect their partners in two ways. The first
way is indirect interactions from co-involved metabolic processes
(green line). For example, OCRL and TrkB are co-involved in the
cell projection regulation process, so we can expect that OCRL
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Table 1. Schizophrenia SNP combinations and single SNPs satisfying criteria (precision > 0.6 and hypergeometric P-value < 0.05)

Model SNP Precision
(GAIN)

Precision
(HUGR)

P-value
(GAIN)

P-value
(HUGR)

Best single SNPs rs344252 0.541 (761/1407) 0.289 (30/104) 0.001 de-enriched
rs12207258 0.529 (699/1322) 0.31 (100/323) 0.008 de-enriched
rs6811243 0.523 (559/1069) 0.315 (141/449) 0.041 de-enriched
rs56145559 0.519 (1987/3835) 0.322 (263/819) 0.001 de-enriched
rs1319017 0.516 (2600/5042) 0.291 (509/1753) 0.001 de-enriched
rs6002655 0.514 (2816/5486) 0.313 (604/1934) 0.001 de-enriched
rs489939 0.512 (1312/2567) 0.309 (528/1710) 0.05 de-enriched
rs7701440 0.508 (3063/6032) 0.304 (602/1984) 0.001 de-enriched
rs783540 0.507 (2368/4676) 0.313 (570/1825) 0.028 de-enriched

Neuronal growth
model

A2D0 0.769 (10/13) 0.667 (2/3) 0.044 0.5
A0B1C2 0.618 (34/55) 1 (2/2) 0.048 0.25
A1D0E2 0.818 (9/11) 0.5 (1/2) 0.032 0.75
A2D0E0 0.875 (7/8) 0.667 (2/3) 0.034 0.5
B1C2D0 0.643 (27/42) 1 (1/1) 0.041 0.5
B1C2E0 0.66 (31/47) 1 (1/1) 0.018 0.5
C0D0E2 0.673 (33/49) 0.5 (7/14) 0.01 0.605
A0B1C2D0 0.676 (25/37) 1 (1/1) 0.022 0.5
A0B1C2E0 0.651 (28/43) 1 (1/1) 0.031 0.5
A1B0D0E2 0.818 (9/11) 0.5 (1/2) 0.032 0.75
A2B0D0E0 1 (6/6) 0.667 (2/3) 0.015 0.5
A0C0D0E2 0.636 (28/44) 0.5 (6/12) 0.045 0.613
B0C0D0E2 0.659 (29/44) 0.545 (6/11) 0.022 0.5
B1C2D0E0 0.667 (20/30) 1 (1/1) 0.047 0.5
A0B1C2D0E0 0.679 (19/28) 1 (1/1) 0.041 0.5

Numbers next to precision refer numbers of true positives (patients with a marker) and positives. De-enriched in P-value indicates that a marker
discriminates patients less than random (50%). In each combination, A, B, C, D and E denote labels of the five highest impact SNPs in the model (Table S1), and
0, 1 and 2 indicate homozygous reference, heterozygous and homozygous alternative allele, respectively. For example, A0B1C2 is a combination that SNP A is
homozygous reference, SNP B is heterozygous and SNP C is homozygous alternative in one sample.

Figure 4: Scatter plot comparison of SNP combinations and single GWAS
SNPs. Each dot represents an SNP combination or a single SNP in
Table 1. Single SNPs (gray) are biased toward the lower side and it shows
that single SNPs lose their prediction power in the independent dataset.
In contrary to single SNPs, SNP combinations from the SLEM model
(blue) are close to the identity line. It indicates that SNP combinations
from SLEM preserve prediction power in different datasets and they are
more robust schizophrenia markers than single GWAS SNP.

expression may change TrkB expression through intermediary
genes or proteins in cell projection regulation process. The other
way is WNT-Ca2+ signaling (blue line), which is well known
by literatures [32]. Unfortunately, there is no report about the
interaction between Alpha Tocopherol Transfer Protein Like

(TTPAL) and Reelin but it may be derived from the lack of
knowledge of TTPAL itself (only six reports in pubmed). In the
marker layer, protein Reelin, HRAS and CaMK2A may regulate
neuronal growth by downstream effectors and CaMK pathway
[33–37] and TrkB would contribute to neuronal development by
BDNF–TrkB pathways [30–32]. As a consequence, neuronal size
and density in the frontal cortex would be altered like already
reported in previous studies [38].

DISCUSSION
We have proposed SLEM to explore the effect of SNP combinations
on the cause of schizophrenia through intermediate molecular
and cellular functions. The proposed SLEM technique utilizes two
levels of precision data for learning. It constructs initial backbone
networks with more precise but small amount of multilevel assay
data. Then, it learns relative weights of intermediate interac-
tions with the less precise but massive amount of public GWAS
data. The learned networks facilitate identifying effective SNP
interactions from the intractably large space of all possible SNP
combinations.

We have identified 15 effective SNP combinations including a
combination of rs11586952(AA), rs3735025(aa) and rs9655340(aa)
along with their intermediate effect pathways to schizophrenia
susceptibility in the neural growth model (Figure 5 and Table 1).
We expect that these combinations are worthy of further exam-
ination to deepen mechanistic understanding of schizophrenia
etiology.

In the suggested mediator pathway module, the cellular
phenotypes show different associations by neocortical layers.
Neuron density of orbitofrontal cortex (OFC) layer 4 has a negative
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Figure 5: Identified SNP combinations along with their intermediate effect pathways to schizophrenia susceptibility. Each association is explained by
potential biological interactions developed from literature evidences (Figure 2). The SNP combination with the best performance is selected as the
most reliable combination from each model. Allele notations ‘aa’, ‘AA’ and ‘Aa’ refer to homozygous reference, homozygous alternative and
heterozygous, respectively.

association with schizophrenia, whereas neuron density of
OFC layer 2 has a positive association. Typically, it is a rare
phenomenon that two close layers have opposite associations
with schizophrenia but cell type heterogeneity caused by
neuronal migration may explain the case. It is a widely known
fact that neurons migrate during the development of the cerebral
cortex [39]. And this migration leads to the heterogeneity of cell
type composition in cortical layers. Single-cell sequencing unveils
cellular migration during cortical development and also reveals
cell type heterogeneity in the late stage of the development
[40]. This cell type heterogeneity caused by migration results in
different cell sizes or densities by layer and opposite associations
in SLEM model. Since there are limited neocortical layer-specific
studies, it is not simple to verify this assumption but there is a
supporting study that abnormal neuronal migration is implicated
in schizophrenia [41].

We also expect that the proposed SLEM technique could be
applied to other disease studies, where (i) massive GWAS data are
available, (ii) small scale but precise assay data are available and
(iii) disease pathology in the molecular and cellular contexts is
still controversial or vague.

Key Points

• We propose an interpretable deep learning technique,
which called SLEM to discover multi-SNP effects of
schizophrenia etiology and interpret these effects.

• SLEM technique can train the interpretable model for
schizophrenia that has insufficient prior information
and samples by utilizing information of experimen-
tal data.

• We confirmed that the trained SLEM model shows com-
parable performance to the conventional model and its
interpretable information is consistent with previous
knowledge.

• We found SNP combinations that predict schizophrenia
more precise and robust and discovered their multi-SNP
effects on neuronal growth by interpreting information
of the SLEM model.
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