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Abstract
Multicomponent traditional medicine prescriptions are widely used in Ethiopia for disease treatment. However, inconsistencies
across practitioners, cultures, and locations have hindered the development of reliable therapeutic medicines. Systematic analysis
of traditional medicine data is crucial for identifying consistent and reliable medicinal materials. In this study, we compiled and
analyzed a dataset of 505 prescriptions, encompassing 567 medicinal materials used for treating 106 diseases. Using association
rule mining, we identified significant associations between diseases and medicinal materials. Notably, wound healing—the most
frequently treated condition—was strongly associated with Rumex abyssinicus Jacq., showing a high support value. This
association led to further in silico and network analysis of R. abyssinicus Jacq. compounds, revealing 756 therapeutic targets
enriched in various KEGG pathways and biological processes. The Random-Walk with Restart (RWR) algorithm applied to the
CODA PPI network identified these targets as linked to diseases such as cancer, inflammation, and metabolic, immune,
respiratory, and neurological disorders. Many hub target genes from the PPI network were also directly associated with wound
healing, supporting the traditional use of R. abyssinicus Jacq. for treating wounds. In conclusion, this study uncovers significant
associations between diseases and medicinal materials in Ethiopian traditional medicine, emphasizing the therapeutic potential of
R. abyssinicus Jacq. These findings provide a foundation for further research, including in vitro and in vivo studies, to explore and
validate the efficacy of traditional and natural product-derived medicines.
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Introduction

Over time, numerous cultures worldwide have developed their
own traditional healing systems. In recent years, there has been
a significant increase in the popularity and acceptance of tra-
ditional, complementary, and alternative medicine (TCAM) in
both developing and developed countries [1]. Traditional
medicine (TM) is widely used and practiced in countries like
China, Korea, India, and the African continent [2]. In China,

traditional herbal medicine accounts for 30–50% of the total
medicinal consumption [3]. In African countries such as
Ghana, Mali, Nigeria, and Zambia, herbal medicines are the
primary treatment for ~60% of children with high fever caused
by malaria [4]. This trend reflects the growing interest in
natural product therapy and research on a global scale.

As a result of this increasing interest and utilization, there
has been a corresponding rise in the availability of academic
articles and electronic databases focusing on traditional med-
icines. An example of such a resource is the Compound
Combination-Oriented Natural Product Database with Unified
Terminology (COCONUT), which consolidates 21,456
oriental medicine prescriptions from Korean, Chinese, and
Japanese herbal medicine sources [5]. Additionally, the inte-
grated Ethiopian traditional herbal medicine and phytochem-
icals database (ETM-DB) encompasses details on 573 multi-
component prescriptions derived from combinations of 265
medicinal materials found in Ethiopia [6]. The ETM-DB
serves as a valuable resource to augment the knowledge and
utilization of traditional medicines in Ethiopia, primarily
focusing on their application in natural product-based drug
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discovery. These databases serve to consolidate and dis-
seminate knowledge, supporting research in natural product-
based therapies globally.

To harness the power of the vast and diverse data, several
key computational techniques have emerged. Coupled with
massive computing resources and extensive virtual libraries
of drug-like molecules, these developments are reshaping
how we approach drug discovery [7]. Computational drug
discovery, also known as in silico drug discovery, employs
two primary methodologies: Virtual Screening (VS) and
Ligand-Based Drug Design (LBDD), each leveraging
computational techniques to accelerate the identification
and design of therapeutic compounds [8–10]. VS utilizes
computational models to analyze extensive compound
libraries and predict their ability to bind with target bio-
molecules associated with diseases. This method helps
prioritize compounds based on their predicted binding
affinities, guiding further experimental validation [11].
Conversely, LBDD relies on computational models built
upon known ligands to design new compounds that mimic
their structures or properties, aiming to interact effectively
with the target [9]. Both methodologies incorporate tech-
niques such as Quantitative Structure-Activity Relationship
(QSAR) modeling to predict biological activities and opti-
mize compounds for efficacy and safety profiles [12].
Additionally, Machine Learning/Artificial Intelligence (ML/
AI) methods form another category within computational
drug discovery [13, 14]. These methods employ predictive
modeling to forecast biological activities or adverse effects
of compounds, uncovering patterns and correlations crucial
for drug discovery. Data mining is one of the ML methods
that could be utilized to effectively handle and analyze large
datasets and convert into useful knowledge for various
decision making. Data mining is the process of extracting
implicit, previously unknown, and potentially useful infor-
mation from data ([15, 16, 17]).

Association rule mining is a fundamental data mining
concept extensively investigated to identify associations
between itemsets in vast databases. Its objective is to
identify sets of items that frequently occur together in
transactional databases. The association rule mining algo-
rithm was first introduced by Agrawal et al., [18], primarily
applied to analyze basket data models, where each basket
represents a transaction, and the items purchased within the
basket are termed as itemsets. Network analysis is another
crucial approach that leverages computational technologies
to support drug discovery efforts. Biological networks,
which represent complex systems of interacting entities, can
be categorized into several types, including Protein-Protein
Interaction (PPI) networks, signal transduction networks,
and gene regulatory networks. To analyze these networks,
various methods and algorithms are employed, including
centrality measures, community detection, and pathway

analysis. The Random - Walk with Restart (RWR) algo-
rithm is particularly valuable for identifying key nodes and
functional modules within networks and is often applied to
centrality measures and community detection. RWR simu-
lates a stochastic process where a “walker” traverses the
nodes of a graph, occasionally returning to the starting
point, which aids in exploring the network’s structure and
revealing important relationships and functions [19].

Ethiopia is rich in cultural diversity, encompassing over
80 ethnic groups, each with unique traditions and knowl-
edge in traditional healthcare. The country’s history is
deeply intertwined with the use of traditional medicine,
which encompasses a wide range of practices, including
preventive, curative, and even surgical methods, showcas-
ing the diverse and vibrant Ethiopian cultures [20].
According to the New Partnership for Africa’s Develop-
ment, a significant portion of the Ethiopian population,
estimated between 60 and 79%, still relies on indigenous
traditional medicine for their healthcare needs [21]. This
continuing reliance on traditional medicine can be attributed
to various factors. As a developing nation, access to modern
healthcare remains limited in many parts of the country.
Moreover, the expenses associated with modern medical
services make them unaffordable for many people. In con-
trast, traditional practices are more familiar and culturally
accepted, leading to their continued usage. Beyond the
cultural significance, Ethiopia’s natural resource abundance
contributes to the popularity of traditional medicine prac-
tices. The country is blessed with a remarkable diversity of
flora, including 6500–7000 floral species, of which 10–12%
are exclusive to Ethiopia. Remarkably, more than 1000
plant species, accounting for 15% of the total flora, are
utilized for medicinal purposes [22–24]. In this way,
Ethiopia’s heritage, cultural acceptance, and abundant nat-
ural resources all converge to sustain the utilization of tra-
ditional medicine, bridging the gap in healthcare access and
meeting the needs of its people.

Traditional medicine in Ethiopia holds significant cul-
tural and health importance, drawing knowledge from
diverse sources including ancient records and oral traditions
[24]. Indigenous practitioners pass down this wisdom,
forming the foundation of Ethiopian traditional literature.
Academic research complements this by exploring ethno-
botany, ethnomedicine, phytochemistry, and the biological
properties of medicinal plants [6, 25]. This heritage plays a
pivotal role in Ethiopian society, deeply embedded in its
cultural, social, and economic fabric over centuries. Parti-
cularly in rural and remote areas with limited access to
modern healthcare, traditional medicine serves as a readily
accessible and affordable alternative. Its holistic approach,
addressing physical, spiritual, and emotional well-being,
resonates with local beliefs in comprehensive healthcare.
Increasingly recognized for its role alongside modern
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healthcare, traditional medicine supports chronic disease
management and palliative care. Ethiopia’s rich biodiversity
provides an abundant source of medicinal plants crucial for
traditional remedies, preserving both natural resources and
local livelihoods through sustainable practices. Beyond
national borders, Ethiopian traditional medicine attracts
global interest for its potential contributions to global health
solutions. In summary, Ethiopian traditional medicine
embodies cultural preservation, community health, and
sustainable practices, offering insights and solutions that
resonate locally and internationally [26, 27].

Ethiopian traditional medicine, like other traditional
systems such as oriental medicine, predominantly involves
the use of multicomponent prescriptions. These practices
recognize the synergistic interactions and potentiating
effects among the various medicinal materials used in pre-
scriptions [28]. However, the available information on the
therapeutic use of multicomponent prescriptions remains
limited, despite the relatively abundant modern literature on
the therapeutic use of individual medicinal materials. It is
evident in Ethiopia, as well as in other countries and regions
of the world, including India [29], that the presence of
diverse cultures and ethnic groups with their own traditional
medicine practices leads to variations in prescriptions and
constituent medicinal materials for similar symptoms. These
prescriptions vary among different traditional medicine
practitioners, influenced by cultural practices and geo-
graphical locations. Additionally, the availability of specific
medicinal materials for prescriptions is influenced by the
geo-climatic conditions of a given area, further contributing
to these variations.

These variations in traditional medicine practices lead to
challenges in establishing a consistent and reliable selection of
therapeutic medicinal materials and developing effective pre-
scriptions for treating prevalent diseases. The lack of standar-
dization not only complicates scientific validation but also
poses challenges in ensuring the safety and efficacy of treat-
ments, potentially leading to unpredictable outcomes [30, 31].
These challenges have significantly hindered the development
of reliable therapeutic medicines, creating barriers to the sys-
tematic study and clinical testing needed for modern drug
development. To address these issues and promote harmonized
practices, standardizing traditional medicine practices through
systematic analysis and harmonization is crucial. Our approach
in this study aims to identify consistent and reliable medicinal
materials, which can then be developed into standardized
therapeutic agents. Such an approach not only acknowledges
the cultural significance of traditional medicine but also
enhances its credibility and applicability in contemporary
medical practice.

In this study, we employed data mining and network
analysis techniques to analyze prescription data, aiming to
establish a reliable collection of medicinal materials for

practitioners by identifying associations between common
diseases and these medicinal materials. Furthermore, we
conducted in silico and network analysis to support these
associations and affirm the traditional therapeutic uses of
medicinal materials. This included molecular-level investi-
gations to uncover therapeutic targets, pathways, biological
processes, and disease associations, exemplified by our
analysis of Rumex abyssinicus Jacq. (Polygonaceae) and its
application in wound healing. By compiling and analyzing
traditional medicine data in this manner, our study fills a
gap in research by providing comprehensive insights into
Ethiopian traditional medicine prescription and supports the
development of harmonized and effective natural product-
derived medicines.

Material and Methods

Compilation and Pre-Processing of Traditional
Medicine Prescriptions

Multicomponent traditional medicine prescriptions, derived
from natural products, are widely practiced in Ethiopia.
Despite substantial literature existing on the therapeutic use
of individual medicinal materials, information about the
uses of multicomponent prescriptions is limited. For this
study, prescription data were manually curated from various
sources including research articles, books, and natural
product databases. The majority of the prescription data was
compiled from the book “Medicinal Plants and Enigmatic
Health Practices of Northern Ethiopia” [32], which is the
most comprehensive source containing extensive records of
traditional multicomponent medicine prescriptions from
northern Ethiopia. Authored by expert traditional medicine
practitioners, the book draws from comprehensive sources
including ancient manuscripts and microfilms from the
British Library, which were taken from Ethiopia long ago.
Additional prescription information was sourced from
research articles focusing on detailed prescriptions from
diverse regions of Ethiopia [33–35] and the natural product
database, ETM-DB [6].

Despite the scarcity of information on the therapeutic
uses of multicomponent prescriptions, the dataset we com-
piled is sufficient to draw conclusions regarding patterns in
medicinal material usage within traditional medicine pre-
scriptions. In this study, prescriptions were selected if they
included the use of multicomponent medicinal materials for
treating human diseases. To ensure data relevance and
specificity, prescriptions for non-illness practices (e.g.,
remedies for the evil eye, attack deterrents, love potions,
and intelligence boosters) were excluded from the dataset.
Furthermore, diseases with a limited number of prescrip-
tions and associated medicinal materials were excluded to
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facilitate effective association rule analysis. The study
focused on diseases with a substantial number of prescrip-
tions and diverse types of medicinal materials across pre-
scriptions to identify and analyze consistent medicinal
materials for each disease. As a result, the dataset used in
this study comprised 505 prescriptions involving combi-
nations of 567 medicinal materials used to treat 106 distinct
human diseases.

To conduct association rule mining and identify sig-
nificant associations between medicinal materials and dis-
eases, we constructed a binary matrix. Each prescription
was represented as a row in the matrix, with columns cor-
responding to human diseases and medicinal materials. The
presence of a medicinal material in a prescription was
denoted by “1”, while its absence was denoted by “0”.

After identifying significant associations between diseases
and medicinal materials, we conducted an in silico analysis,
focusing on R. abyssinicus Jacq. This analysis involved inte-
grating data on the phytochemical constituents of R. abyssi-
nicus Jacq. and therapeutic targets from databases such as the
Integrated Ethiopian Traditional Herbal Medicine and Phyto-
chemicals Database (ETM-DB) [6] and the Compound
Combination-Oriented Natural Product Database with Unified
Terminology (COCONUT) [5]. We explored pathways and
biological processes using Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways [36] and The Gene Ontology
(GO) database and informatics resource [37].

Additionally, we conducted network analysis by apply-
ing the Random- Walk with Restart (RWR) algorithm

within the CODA network to identify diseases associated
with these targets. Furthermore, we constructed a Protein-
Protein Interaction (PPI) network using the CODA network
to identify hub targets linked to the phytochemicals. Sub-
sequently, molecular docking and molecular dynamics
simulations were carried out to investigate the interactions
between the phytochemicals and the identified hub targets,
providing deeper insights into their potential therapeutic
effects.

Figure 1 outlines the research process from data col-
lection and association rule mining to identify relation-
ships between diseases and medicinal materials. It also
depicts the subsequent in silico and network analysis
used to explore the therapeutic effects of R. abyssinicus
Jacq. phytochemicals.

Association Rule Mining

Association Rule Mining is a key data mining technique used
to identify frequent itemsets and their associations in large
databases. Originally introduced by Agrawal et al. [18] for
analyzing basket data models, it identifies sets of items that
frequently occur together in transactions. In this study, we
adopted the association rule mining algorithm from Agrawal
et al., using user-defined minimum support and confidence
thresholds to generate relevant association rules.

For an association rule X (antecedent)⇒ Y (consequent),
the support of the rule is calculated as the proportion of
transactions in the data that contain both antecedent and

Fig. 1 Overview of the process
to identify associations between
medicinal materials and human
diseases from prescription data.
Multicomponent prescriptions,
constituent medicinal materials,
and related diseases were
organized in a transaction
database. Association rule
mining was then employed to
extract significant associations
between medicinal materials and
diseases from the
multicomponent prescriptions
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consequent, representing the frequency of occurrence of the
rule.

Support X ) Yð Þ ¼ Number of transactions containing both X ^ Y
Total number of transactions

Confidence is a measure of how often a rule is true in the
data. It is the ratio of the number of transactions that contain
both the antecedent and the consequent of the rule, to the
number of transactions that contain only the antecedent
[38]. A high confidence means that the rule is reliable and
consistent. A confidence value of 0 indicates that none of
the transactions with the antecedent itemset have the con-
sequent itemset, while a confidence value of 1 signifies that
all transactions with the antecedent itemset include the
consequent itemset.

Confidence X ) Yð Þ ¼ Number of transactions containing both X ^ Y
Number of transactions containing X

Lift is a measure of how much more likely the con-
sequent of a rule is to occur when the antecedent is present,
compared to when it is absent. It is the ratio of the con-
fidence of the rule, to the frequency of the consequent in
the whole dataset [39]. For example, for the association
rule X (antecedent) ⇒ Y (consequent), the lift is the con-
fidence of the rule, divided by the proportion of transac-
tions that have Y. A high lift value indicates a significant
and interesting rule, highlighting a strong association
between the antecedent and the consequent. The lift value
of 1 means that antecedent and consequent itemsets are
completely independent, which can be achieved by the
pure random rules, and the lift value of 2 means that
antecedent and consequent itemsets are two times more
dependent than the pure random rules [39].

In this study, association rule mining was employed to
identify the associations between diseases and ther-
apeutic medicinal materials using the arules package
with the apriori algorithm in R [40]. The association
rules took the form of “antecedent ⇒ consequent”, where
the antecedent represented the disease and the con-
sequent represented the medicinal material. Statistical
parameters, including support, confidence, and lift, were
used to assess the significance of the associations. In this
analysis, we set minimum support and confidence
thresholds of 0.3 and 10%, respectively. Any generated
rule that met or exceeded these thresholds for both
support and confidence was deemed statistically
significant.

When configuring the association rule parameters for this
specific analysis, the support of an item (either disease or
medicinal material) is determined by the fraction of trans-
actions (in this context, prescriptions) in which the item is
present. The support value of an association rule is calcu-
lated as the ratio of the number of prescriptions containing
both the disease and medicinal materials to the total number
of prescriptions. The confidence value of an association rule
is calculated as the ratio of prescriptions that include both
the disease and the medicinal material to the prescriptions
that include the disease alone. This value provides an
indication of how often the rule has been observed to be
true. The lift is a measure of how much more likely the
medicinal material occurs when the related disease is pre-
sent, compared to when the disease is absent [41]. It indi-
cates the dependence between the disease and medicinal
material. In this analysis, a high lift value and lower con-
fidence suggest that the medicinal material is specifically
used for treating that particular disease. On the other hand, a
high confidence value and relatively low lift value indicate
that the medicinal material is not specific to the disease, and
it is utilized to treat various diseases in addition to the
associated disease.

Figure 2 provides an overview of the process used to
identify associations between medicinal materials and
human diseases from prescription data. It shows how
multicomponent prescriptions, constituent medicinal
materials, and related diseases were organized in a
transaction database. Association rule mining was then
applied to extract significant associations between med-
icinal materials and diseases from these multicomponent
prescriptions.

Network Visualization of Associations between
Traditional Medicine and Diseases

In our analysis, we represented disease and medicinal
materials as nodes in a bipartite network, where edges
indicate that the medicinal material is part of the prescrip-
tion used to treat the disease. By employing the Python
NetworkX library version 2.5, we constructed, analyzed,
and visualized the networks, allowing for a better under-
standing and visualization of the associations between the
interacting items.

To further elucidate these associations, radar charts were
employed to visually interpret the association rules between

lift X ) Yð Þ ¼ Number of transactions containing both X ^ Yð Þ= Number of transactions containing Yð Þ
Fraction of transactions containing Y
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diseases and medicinal materials. These charts effectively
present multidimensional data, allowing for a comparison of
statistical measures such as confidence and lift across var-
ious disease-medicinal material pairs [42]. Radar charts
illustrated confidence values for different medicinal mate-
rials for selected diseases, depicted lift values indicating the
specificity of associations, and presented standardized
values for comparative analysis. This visual representation
complemented the quantitative analysis by providing
insights into the relative significance of medicinal materials
in treating specific diseases.

Exploring R. abyssinicus Jacq. Phytochemicals’
Pharmacological Activity Through Target
Identification, Network Analysis, KEGG Pathways,
and GO Terms

In our study, we explored the pharmacological potential of
phytochemicals from R. abyssinicus Jacq., with a focus on
their therapeutic targets and related pathways [43].
Mukherjee et al., [43]. We specifically targeted R. abyssi-
nicus Jacq. because of its notable association with wound
healing, as detailed in Table 1.

The process outlined in Fig. 3 involved several key steps.
First, we compiled phytochemical constituents from sources
such as the ETM-DB [6] and relevant literature. Next, we
identified functionally related therapeutic targets using the
COCONUT database [5], which includes information on
traditional herbal medicines, combination drugs, functional
foods, and molecular drug/target interactions.

We then constructed a heterogeneous network using the
CODA network [44]. Using the RWR algorithm [19], we
traced the information flow from therapeutic targets to
disease nodes. The RWR algorithm helped us prioritize
disease nodes based on their connectivity to the therapeutic
targets. Finally, the disease nodes were ranked according to
their RWR scores, providing insights into which diseases
are most closely associated with the identified targets.

To further understand the interactions of R. abyssinicus
Jacq. phytochemicals with biological systems, we analyzed
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment [36] and Gene Ontology (GO) terms [37]
associated with the identified targets. We conducted Gene Set
Enrichment Analysis (GSEA) [45] using the enrichr function
in the Gseapy Python library (https://www.gsea-msigdb.org/
gsea/index.jsp), with gene sets “KEGG_2021_Human”, and
“GO_Biological_Process_2021” applying a cut-off of 0.5.
This analysis assessed the association of phytochemicals with
predefined biological pathways, providing valuable insights
into their potential pharmacological effects.

Integration of PPI Network Analysis, Protein-Ligand
Interactions, and MD Simulation in Investigating R.
abyssinicus Jacq. Phytochemicals

We constructed a Protein-Protein Interaction (PPI) network
using the Context-Oriented Directed Associations (CODA)
network, which integrates data from multiple sources
including BioGRID, KEGG, and EndoNet. The BioGRID
data (release 4.4.198) was obtained from https://downloads.

Fig. 2 Process for identifying
associations between medicinal
materials and diseases. It shows
the organization of prescription
data in a transaction database
and the application of
association rule mining to reveal
significant associations
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Table 1 Associations between diseases and medicinal materials, including support, confidence, and lift values

Disease Medicinal Material Support (%) Confidence (%) Lift

Wound Rumex abyssinicus Jacq. 1.39 17.95 5.33

Conyza steudelii Sch.-Bip. ex A. Rich. 1.19 15.38 5.55

Plumbago zeylanica L. 0.99 12.82 2.02

Calpurnia aurea (Ait.) Benth. 0.79 10.26 2.35

Mental illness Clerodendrum myricoides (Hochst.) R.
Br. ex Vatke

1.58 29.63 3.48

Ruta chalepensis L. 1.19 22.22 3.87

Clausena anisata (Willd.) Benth. 0.79 14.81 4.68

Trigonella foenum-graecum L. 0.59 11.11 7.01

Cannabis sativa L. 0.59 11.11 5.10

Withania somnifera (L.) Dunal 0.59 11.11 2.81

Gladiolus psittacinus Hook. 0.59 11.11 3.74

Verbena officinalis L. 0.59 11.11 2.95

Lepidium sativum L. 0.59 11.11 2.95

Asparagus africanus Lam. 0.59 11.11 2.44

Securidaca longepedunculata Fresen. 0.59 11.11 2.44

Capparis tomentosa Lam. 0.59 11.11 2.67

Adhatoda schimperiana (Hochst) Nees. 0.59 11.11 2.34

Myrrh (Commiphora cf. crenulata or
other C. spp.)

0.59 11.11 2.08

Cucumis ficifolius A. Rich. 0.59 11.11 1.22

Sexual stimulation
(aphrodisiacs)

Tragia pungens (Forssk.) Muell. Arg. 1.19 33.33 28.06

Asparagus africanus Lam. 0.99 27.78 23.38

Ferula communis L. 0.99 27.78 9.35

Thalictrum rhynchocarpum Dill. & A.
Rich.

0.79 22.22 4.32

Phoenix reclinata Jacq. 0.59 16.67 7.65

Sida cuneifolia Roxb. 0.59 16.67 7.01

Olea europaea L. subsp. africana (Mill.)
P.S. Green

0.59 16.67 6.47

Gladiolus psittacinus Hook. 0.59 16.67 5.61

Cucumis ficifolius A. Rich. 0.59 16.67 1.83

Habenaria sp. 0.40 11.11 28.06

Sida cuneifolia Roxb. or S. ovata Forssk. 0.40 11.11 9.35

Tragia pungens (Forssk) Muell. Arg. 0.40 11.11 8.02

Catha edulis (Vahl) Forssk. ex Endl. 0.40 11.11 9.35

Stylochiton kerensis N.E. Brown 0.40 11.11 6.23

Cannabis sativa L. 0.40 11.11 5.10

Zehneria scabra (L.f.) Sonder 0.40 11.11 2.67

Clerodendrum myricoides (Hochst.) R.
Br. ex Vatke

0.40 11.11 1.30

Eye disease Hagenia abyssinica (Bruce) J.F. Gmel. 0.59 18.75 7.28

Premna schimperi Engl. 0.40 12.50 9.02

Artemisia afra Jacq. ex Willd. 0.40 12.50 7.89

Vitis vinifera L. 0.40 12.50 5.74

Solanum marginatum L.f. 0.40 12.50 5.26

Rabies Cucumis ficifolius A. Rich. 1.39 43.75 4.80

Phytolacca dodecandra L’Herit. 0.99 31.25 10.52
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Table 1 (continued)

Disease Medicinal Material Support (%) Confidence (%) Lift

Cyphostemma junceum (Webb)
Descoings ex Wild & Drummond

0.79 25.00 10.52

Solanum cf. adoense Hochst. 0.79 25.00 4.86

Adhatoda schimperiana (Hochst) Nees. 0.59 18.75 3.95

Sida cuneifolia Roxb. or S. ovata Forssk. 0.40 12.50 10.52

Senecio myriocephalus Sch. Bip. ex
A.Rich.

0.40 12.50 7.01

Vitis vinifera L. 0.40 12.50 5.74

Kalanchoe petitiana A. Rich. 0.40 12.50 5.74

Mandragora officinarum/Luffa aegyptica 0.40 12.50 4.86

Frequent miscarriage Osyris quadripartita Decne. 0.59 18.75 5.57

Clutia abyssinica Jaub. & Spach. 0.59 18.75 6.31

Solanum cf. adoense Hochst. 0.59 18.75 3.64

Cucumis ficifolius A. Rich. 0.59 18.75 2.06

Periploca linearifolia A. Rich. & Quart.-
Dill.

0.40 12.50 10.52

Aloe sp. 0.40 12.50 6.31

Rumex nervosus Vahl 0.40 12.50 4.86

Leprosy Plumbago zeylanica L. 0.99 33.33 5.26

Withania somnifera (L.) Dunal 0.59 20.00 5.05

Euclea schimperi (DC.) Dandy 0.59 20.00 5.61

Capparis tomentosa Lam. 0.59 20.00 4.81

Sylvicapra grimmia 0.40 13.33 16.83

Maesa lanceolata Forssk. 0.40 13.33 22.44

Ranunculus multifidus Forssk. 0.40 13.33 22.44

Olea europaea L. subsp. africana (Mill.)
P.S. Green

0.40 13.33 5.18

Osyris quadripartita Decne. 0.40 13.33 3.96

Clematis simensis Fresen. 0.40 13.33 5.18

Brucea antidysenterica J.F. Mill. 0.40 13.33 3.96

Rumex abyssinicus (Jacq.). 0.40 13.33 3.54

Jasminum floribundum R. Br. ex Fresen. 0.40 13.33 3.06

Acokanthera schimperi (DC.) Oliv. 0.40 13.33 3.21

Cucumis ficifolius A. Rich. 0.40 13.33 1.46

Eczema Hagenia abyssinica (Bruce) J.F. Gmel. 0.59 21.43 8.32

Cucumis ficifolius A. Rich. 0.59 21.43 2.35

Lichen 0.40 14.29 14.43

Gossypium barbadense L. 0.40 14.29 12.02

Mandragora officinarum/Luffa aegyptica 0.40 14.29 5.55

Zehneria scabra (L.f.) Sonder 0.40 14.29 3.44

Menorrhagia Brassica nigra L. 0.59 21.43 12.02

Protea gaguedi Gmel. 0.40 14.29 36.07

Cordia africana Lam. 0.40 14.29 10.31

Nigella sativa L. 0.40 14.29 6.56

Achyranthes aspera L. 0.40 14.29 3.61

Asparagus africanus Lam. 0.40 14.29 3.14

Malaria Dodonaea viscosa (L.) Jack. 0.59 25 15.78

Ekebergia capensis Sparm. 0.4 16.67 12.02
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thebiogrid.org/BioGRID. For KEGG, we used the REST
API available at http://rest.kegg.jp/ to retrieve XML format
text files, which we processed to filter protein-protein
interactions and convert them into Entrez IDs. Additionally,
we accessed data from EndoNet at http://endonet.bioinf.
med.uni-goettingen.de in XML format. These data sources
were combined, and overlapping interactions were
removed. The cleaned data was then used to construct the
PPI network with the Python library NetworkX 2.5. The
final PPI network comprises 17,358 protein nodes and
261,334 edges.

To focus on therapeutic targets related to R. abyssinicus
Jacq. phytochemicals, we selected proteins with gene pro-
duct relationships from this PPI network. We converted the
nodes into gene symbols for clarity. From this network, we
extracted a hub network highlighting therapeutic targets
associated with R. abyssinicus Jacq. phytochemicals. Hub
targets were identified using two network measures: degree
centrality and eigenvector centrality, with hub targets
defined as nodes within the top 1% for both measures.

We then performed structure-based molecular docking to
evaluate the binding interactions between the phytochem-
icals and their associated hub targets. For this analysis, we
retrieved PDB files for five selected hub proteins from the
RCSB Protein Data Bank (https://www.rcsb.org/) and
obtained the 3D SDF files of the ligands from the PubChem
database [46]. Protein-ligand docking was conducted using
the CB-Dock web server (https://cadd.labshare.cn/cb-
dock2/index.php), which integrates cavity detection, dock-
ing, and homologous template matching. CB-Dock utilizes
AutoDock Vina [47]. Finally, we visualized the 3D protein-
ligand complexes using CB-Dock, which provides inter-
active 3D visualizations of the binding modes. We also
exported images of these complexes directly from the CB-
Dock web server.

Following the molecular docking studies, we conducted
Molecular Dynamics (MD) simulations to assess the stabi-
lity of the binding interactions between the phytochemicals
and their target proteins. Emodin, which exhibited a rela-
tively low binding energy score of −8.9 kcal/mol with the

Fig. 3 Schematic overview of
the methods for identifying
potential therapeutic activities of
R. abyssinicus Jacq.
phytochemicals. This process
involves compiling
phytochemical data from various
sources, identifying therapeutic
targets using the COCONUT
database, constructing a
heterogeneous network, and
identifying related diseases and
hub targets with the CODA
network. Pathway enrichment
analysis was performed using
KEGG and GO terms, followed
by molecular docking and
molecular dynamics simulations
to characterize phytochemical-
target interactions

Table 1 (continued)

Disease Medicinal Material Support (%) Confidence (%) Lift

Kanahia laniflora (Forssk.) R. Br. 0.4 16.67 7.65
Jasminum floribundum R. Br. ex Fresen. 0.4 16.67 3.83

Solanum cf. adoens Hochst. 0.4 16.67 3.24

Clerodendrum myricoides (Hochst.) R.
Br. ex Vatke

0.4 16.67 1.96
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target protein ESR1 in docking studies, was selected for the
MD simulation. We performed a 100 nanosecond (ns)
simulation using the GROningen MAchine for Chemical
Simulations (GROMACS) 2021.4 software package [48].
For protein topology preparation, we used SwissParam
(https://www.swissparam.ch/) [49], and for ligand topology
preparation, we employed the CHARMM27 all-atom force
field [50]. The simulation utilized a triclinic box with the
Simple Point Charge (SPC) water model and explicit sol-
vent periodic boundary conditions. Charge neutralization of
the solvated complexes was achieved with sodium and
chloride ions. Energy minimization was performed using
the steepest descent method over 5000 steps to eliminate
any steric clashes and bad contacts.

A series of equilibration steps followed to relax the
system and bring it to an appropriate starting state. This
included using a Berendsen thermostat for equilibration
under constant Number of particles, Volume, and Tem-
perature (NVT) for 100 picoseconds (ps) [51]. Re-
equilibration was carried out with a Parrinello-Rahman
barostat, applying a time step of 2 femtoseconds (fs) for
each equilibration round over a further 100 ps at constant
Number of particles, Pressure, and Temperature (NPT) [52].
The MD production phase was conducted for 100 ns with a
time step of 2 fs, maintaining a constant temperature of
300 K and pressure of 1 atm. Using GROMACS’ “trjconv”
function, the complex was re-centered and re-wrapped into
the unit cells for trajectory analysis. The Root Mean Square
Deviation (RMSD) of the protein, ligand, and protein-
ligand complex relative to their initial positions, as well as
the Radius of gyration (Rg), were used to analyze the tra-
jectories. Data visualization and charting was done using
the Grace: GRaphing, Advanced Computation and
Exploration of data [53], available at https://plasma-gate.w
eizmann.ac.il/Grace/.

Results and Discussion

Associations between Disease and Medicinal
Materials

In this study, we used the a priori algorithm of association
rule mining to identify significant associations between
diseases and medicinal materials in Ethiopian traditional
medicine prescriptions. We assessed these associations
using statistical metrics such as support, confidence, and
lift. Table 1 presents the support, confidence, and lift values
for the association rules between the top ten most frequently
treated diseases and their associated medicinal materials,
with a focus on rules with a confidence value of at least
10%. For a more comprehensive overview, Supplementary
Table S1 online includes all identified associations between

diseases and medicinal materials, along with their support,
confidence, and lift values.

To illustrate our findings, we selected particular diseases
and their associated medicinal materials based on the fre-
quency of prescriptions. Figure 4 presents a bar chart
depicting the frequency of the most commonly treated
diseases in our dataset. This chart highlights wound healing
as the most prevalent health concern addressed by tradi-
tional medicine practitioners. Each bar in the chart repre-
sents a specific disease, with its height indicating the
number of prescriptions for that disease. Following wound
healing, other common conditions include mental illness,
sexual stimulation (aphrodisiacs), eye disease, rabies, fre-
quent miscarriage, leprosy, eczema, menorrhagia, malaria,
epidemic, rectal prolapse, syphilis, rheumatic pain, sorcery
poisoning (stomach infection), migraine, epilepsy, hemor-
rhoids, oxytocics, cough, infertility, deafness, Ascaris,
vitiligo, headache, relapsing fever, snake bite, scabies,
measles, and haematuria.

The use of the a priori algorithm allowed us to system-
atically identify these significant associations, and Table 1
provides a detailed overview of the association rules derived
from our analysis.

The significance of the association rules in this study is
evaluated using lift and confidence values. Significant
associations are indicated by high values of confidence and
lift. For instance, the rule wound ⇒ Rumex abyssinicus
Jacq. shows a high confidence value of 17.95 and a lift
value of 5.33. This suggests that R. abyssinicus Jacq. is
frequently used for treating wounds in traditional medicine.
Supporting this, Mulisa et al. [54] demonstrated the wound
healing and anti-inflammatory properties of R. abyssinicus
Jacq. This finding underscores how association rules can

Fig. 4 Frequency of various conditions treated with traditional medi-
cine. This bar chart illustrates the prevalence of different conditions
addressed by traditional medicine practitioners in the dataset used in
this study
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identify key medicinal materials, while additional experi-
mental research can validate their traditional uses.

In contrast, the rules Mental illness ⇒ Clerodendrum
myricoides (Hochst.) R. Br. ex Vatke. and Mental illness ⇒
Ruta chalepensis L. exhibit high confidence but relatively
low lift values. This indicates that these medicinal materials
are frequently used to treat mental illness, but they are also
commonly applied to other health conditions. On the other
hand, the rule Mental illness ⇒ Trigonella foenum-graecum
L. has relatively higher lift value of 7.01 and a lower con-
fidence value of 11.11, suggesting that T. foenum-graecum
L. is more specifically associated with treating mental
illness.

For the category of sexual stimulation (aphrodisiacs), the
rules Sexual stimulation (aphrodisiacs) ⇒ Tragia pungens
(Forssk.) Muell. Arg., Sexual stimulation (aphrodisiacs) ⇒
Asparagus africanus (Lam.), and Sexual stimulation (aphro-
disiacs) ⇒ Ferula communis L. show high confidence values,
implying these medicinal materials are frequently used as
aphrodisiacs. Specifically, T. pungens (Forssk.) Muell. Arg.
and Asparagus africanus Lam. have high confidence and lift
values, indicating their prominent role as aphrodisiacs. Con-
versely, Sexual stimulation (aphrodisiacs) ⇒ Habenaria sp.
has a high lift value of 28.06 and a lower confidence value of
11.11, suggesting that Habenaria sp. is more specifically used
for aphrodisiac purposes.

Regarding rabies infection, the rule Rabies ⇒ Cucumis
ficifolius A. Rich. shows high confidence (43.75) but rela-
tively low lift values (4.80). This indicates that Cucumis
ficifolius A. Rich. is commonly used for treating rabies and
several other conditions such as frequent miscarriage and
sexual dysfunction. In contrast, Rabies ⇒ Sida cuneifolia
Roxb. or Sida ovata Forssk. exhibits a high lift value of
10.52 but lower confidence (12.50), suggesting that these
medicinal materials are more specifically used for treating
rabies infection.

For conditions like frequent miscarriage and menor-
rhagia, the rules Frequent miscarriage ⇒ Periploca linear-
ifolia A. Rich. & Quart.-Dill. and Menorrhagia ⇒ Protea
gaguedi Gmel. exhibit high lift values (10.52 and 36.07,
respectively), indicating their specific therapeutic roles in
preventing miscarriage and treating menorrhagia. Further
research into these medicinal materials could provide
valuable insights into their efficacy.

Patterns observed for leprosy reveal that rules such as
Leprosy ⇒ Plumbago zeylanica L., Leprosy ⇒ Withania
somnifera (L.) Dunal, Leprosy ⇒ Euclea schimperi (DC.)
Dandy, and Leprosy ⇒ Capparis tomentosa Lam. have
high confidence and low lift values, suggesting these
materials are commonly used to treat leprosy and other
conditions. Conversely, Leprosy ⇒ Sylvicapra grimmia,
Leprosy ⇒ Withania somnifera (L.) Dunal, and Leprosy ⇒
Ranunculus multifidus Forssk. have higher lift values and

relatively lower confidence, indicating these medicinal
materials are more specifically used to treat leprosy.

Similarly, other significant associations between diseases
and medicinal materials can be discerned from Table 1. To
substantiate these findings, additional in vitro and in vivo
studies are needed to assess the effects of the medicinal
materials and their extracts on the associated pathogens and
diseases.

Network Visualization of Associations between
Traditional Medicine and Diseases

Figure 5 presents a network diagram that visualizes the
associations between 20 different diseases and their corre-
sponding medicinal materials within the dataset used in this
study. Cucumis ficifolius A. Rich. is shown as a large green
circle, indicating its extensive use for treating various dis-
eases. The large light blue square represents aphrodisiacs,
highlighting the range of materials used for this purpose.
Additionally, the diagram illustrates that leprosy and mental
illness are linked to a significant number of medicinal
materials, reflecting their diverse treatment approaches.

Figure 6 shows radar charts to effectively illustrate
associations between medicinal materials and associated
diseases. Leprosy was selected due to its extensive list of
associated medicinal materials, making it a representative
example for this visualization method. While these charts
focus on leprosy, the same approach can be applied to other
diseases. The radar charts show confidence values, which
indicate the strength of the associations between specific
medicinal materials and leprosy; lift values, which represent
the specificity of these associations; and standardized values
that facilitate comparative analysis. The charts show that
Sylvicapra grimmia, Maesa lanceolata Forssk., and
Ranunculus multifidus Forssk. have higher lift values rela-
tive to their confidence values, making them particularly
specific to leprosy treatment. In contrast, Plumbago zeyla-
nica L., Withania somnifera (L.) Dunal, Euclea schimperi
(DC.) Dandy, and Capparis tomentosa Lam. display higher
confidence values compared to their lift values, indicating
these materials are more frequently used to treat leprosy but
are also used to treat other conditions.

Exploring the Pharmacological Activity of R.
abyssinicus Jacq. Phytochemicals via Target
Identification, KEGG Pathways, GO Terms, and
Network Analysis

In this study, we manually curated the phytochemicals in R.
abyssinicus Jacq. From this curated list, we identified ten
phytochemicals—emodin, chrysophanol, oleanolic acid,
physcion, helminthosporin, lupeol, citreorosein, chryso-
phanein, and stigmastane-3,6-dione—that are present in the
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COCONUT database, which provides comprehensive data
on compounds and their related human target genes/pro-
teins. Utilizing this extensive compound-target data, we
identified 756 human target genes/proteins associated with
these phytochemicals.

KEGG pathway enrichment analysis of these targets
revealed that they are significantly enriched in 196 KEGG
pathways (adjusted P-value ≤ 0.05) (Supplementary Table S2
online). Figure 7A highlights the top 20 enriched KEGG
pathways, involving 208 target genes/proteins. To visualize

these relationships, we constructed a network of targets and
pathways using the Python NetworkX package version 2.5,
as depicted in Fig. 7B. Key pathways identified include lipid
metabolism, atherosclerosis, chemical carcinogenesis, cancer
pathways, Kaposi’s sarcoma-associated herpesvirus infec-
tion, AGE-RAGE signaling in diabetic complications,
MAPK signaling, human cytomegalovirus infection, and
C-type lectin receptor signaling. This KEGG enrichment
analysis provides valuable insights into the potential ther-
apeutic benefits of R. abyssinicus Jacq. phytochemicals.

Fig. 5 Network diagram illustrating associations between diseases and
medicinal materials. The diagram shows 20 diseases (light blue
squares) and their associated medicinal materials (green circles). The

size of the nodes reflects the degree of each node, and edge width
indicates the the specificity of the association (measured by lift)
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However, further research is needed to elucidate the specific
mechanisms through which these phytochemicals exert their
effects on the identified molecular targets.

GO analysis were performed to identify the biological
processes associated with the 756 human target genes/pro-
teins related to the phytochemicals from R. abyssinicus Jacq.
These targets were significantly enriched in 918 biological
processes (P-values ≤ 0.05) (Supplementary File S2 online).
As depicted in Fig. 8A, the top 20 biological processes pri-
marily involved proteolysis, cellular protein modification,
dephosphorylation, estrogen metabolism, cortical cytoskele-
ton organization, and ras protein signal transduction. Addi-
tionally, a phytochemical-target-biological process network

was constructed using Python’s NetworkX package (version
2.5). This network, shown in Fig. 8B, highlights that 361
genes are predominantly associated with the top 20 biolo-
gical processes.

Additionally, a network analysis was performed to
identify diseases related to the target genes using the
CODA network database employing RWR algorithm (see
materials and methods). This analysis linked phyto-
chemicals from R. abyssinicus Jacq. to a variety of dis-
eases, including different types of cancers, metabolic and
endocrine disorders (such as diabetes mellitus and
hypertension), inflammatory conditions, immune system
diseases, congenital malformations, respiratory disorders,

Fig. 6 Radar charts illustrating associations between medicinal mate-
rials and leprosy. A Radar chart of confidence values, indicating the
reliability of associations between specific medicinal materials and
leprosy. B Radar chart of lift values, showing the specificity of these

associations, with higher values reflecting materials more specifically
used for leprosy treatment. C Radar chart of standardized values for
both confidence and lift, enabling comparative analysis
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and nervous system diseases. A comprehensive list of the
related diseases is provided in Supplementary Table S3
online.

Many of the diseases identified through the network
analysis correspond with the traditional therapeutic uses of
R. abyssinicus Jacq. For instance, the anti-Alzheimer’s
effect of R. abyssinicus Jacq. is attributed to its isolated

secondary metabolite, helmintosporin, which acts as a dual
inhibitor of the enzymes AChE and BChE [55]. Addition-
ally, crude extracts of R. abyssinicus demonstrate a broad
spectrum of activities, including antibacterial antibacterial
[56, 57], anticancer [57], antiviral [56], anti-inflammatory
[54, 56], antioxidant [58], wound healing [54], antimalarial
[59], diuretic, and analgesic [60] effects.

Fig. 8 Gene Ontology Enrichment Analysis. A Bar graph displaying
the top 20 enriched biological processes identified through GO ana-
lysis. B Phytochemical-target-biological process network generated

with Python NetworkX, illustrating enriched biological processes and
the genes associated with the phytochemicals (Adjusted P ≤ 0.05)

Fig. 7 KEGG Pathway Enrichment Analysis. A Bar graph showing the
top 20 enriched pathways identified through KEGG analysis.
B Phytochemical-target-pathway network created with Python

NetworkX, depicting enriched pathways and their associated genes
(Adjusted P ≤ 0.05)
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One objective of this study was to validate the associa-
tion rule mining results, specifically focusing on the asso-
ciation between wound and R. abyssinicus Jacq. To further
investigate this association, we conducted in silico and
network analysis to explore the molecular-level associations
between the phytochemicals in R. abyssinicus Jacq. and
wound-related conditions. Our analysis indicates that many
phytochemicals in R. abyssinicus Jacq. are associated with
disease categories related to wound, including inflammatory
diseases, immune system disorders, and infectious diseases.
Inflammation, marked by signs such as heat, redness, pain,
swelling, increased body temperature, and fever, constitutes
the initial stage of the wound healing process [61]. Infection
is also a significant factor that can adversely affect wound
healing [62]. These findings provide further support for the
traditional use of R. abyssinicus Jacq. in treating wounds,
aligning with the results obtained from the association rule
mining.

PPI Network, Molecular Docking and Molecular
Dynamics Simulations

From the CODA PPI network (Fig. 9A), we extracted hub
targets associated with the phytochemicals in R. abyssinicus
Jacq., as shown in Fig. 9B. These hub targets, identified
through the PPI network, may hold therapeutic potential and
offer insights into their clinical value [63]. The distribution
of degree and eigenvector centralities for these hub targets
was analyzed within the CODA PPI network, which
includes 17,358 nodes. The top 1, 5, and 10% of nodes had

degree centrality values of 243, 101, and 67, respectively,
and eigenvector centrality values of 0.0313, 0.0138, and
0.008, respectively. Notably, 22 targets associated with R.
abyssinicus Jacq. were found in the top 1% for both degree
and eigenvector centralities, as illustrated in Fig. 10A,
B.These targets include APP, EGFR, CUL3, MCM2, TP53,
COPS5, FN1, ESR1, CDK2, HDAC1, BRCA1, EED,
CSNK2A1, AKT1, MAPK1, SRC, YWHAE, RELA,
HSPB1, CTNNB1, MAPK14, and PCNA.

Several of these hub genes are linked to the wound
healing process. For example, studies have shown that beta-
amyloid precursor protein (APP) and its homolog, amyloid
precursor-like protein 2 (APLP2), are expressed during skin
wound repair in a mouse model of full-thickness skin
excision [64]. The EGFR signaling pathway is known to
play a crucial role in maintaining skin integrity and pro-
moting wound healing [65]. Additionally, Estrogen
Receptor 1 (ESR1) has been found to be enriched in patients
with diabetic wounds (DWs) and regulates human skin
fibroblasts [65]. The PPI network analysis supports our
findings by identifying key hub targets linked to R. abys-
sinicus Jacq. phytochemicals, validating their potential
therapeutic value, particularly in wound healing.

After identifying hub targets associated with phyto-
chemicals from R. abyssinicus Jacq. using the CODA PPI
network, we selected a subset of these targets and phyto-
chemicals for further exploration. We performed structure-
based molecular docking to investigate their interactions.
The docking results indicated successful binding with low
binding energies, suggesting interactions between the

Fig. 9 PPI network and hub genes/proteins associated with R. abys-
sinicus Jacq. A PPI network constructed using the CODA platform,
representing the overall network of protein-protein interactions.

B Network diagram of the 22 hub genes identified in the top 1% of
centrality values from the CODA network, specifically related to the
phytochemicals of R. abyssinicus Jacq.
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selected phytochemicals and the hub targets. Figure 11
shows 3D views of these interactions, and Table 2 provides
details on binding affinities, interacting amino acid residues,
docking centers, and docking sizes for the phytochemicals
and their respective receptors.

The binding affinity energies and interactions between R.
abyssinicus Jacq. phytochemicals and their respective
receptors reveal crucial insights into the molecular mechan-
isms underlying their therapeutic potential. Generally, lower
docking scores (more negative values) indicate stronger and
more stable interactions. These interactions are primarily
driven by hydrogen bonding, hydrophobic interactions, and
electrostatic forces. Hydrogen bonds, particularly, enhance
the stability and specificity of the ligand-receptor complex,
while hydrophobic interactions contribute to the overall
binding affinity by reducing the free energy of the ligand-
receptor complex [66–68].

Emodin demonstrated the highest binding affinity with
ESR1, followed by its interactions with EGFR. Physcione
also showed a strong binding affinity with ESR1. These
interactions typically involved key residues forming
hydrogen bonds and hydrophobic interactions, which sta-
bilized the ligand-receptor complexes and contributed to
their high binding affinities. Oleanolic Acid exhibited sig-
nificant binding affinities with CUL3 and APP. Similar to
the other phytochemicals, the interactions were character-
ized by hydrogen bonds and hydrophobic interactions with
key residues, enhancing the stability of the ligand-receptor
complexes. Overall, the consistent presence of hydrogen
bonds and hydrophobic interactions across these ligand-
receptor complexes underlines their significance in deter-
mining binding affinity and stability, validating the potential
therapeutic applications of these phytochemicals. The

docking output and MD simulation results confirmed stable
interactions over time, supporting the robustness of these
findings [66–68].

We conducted the MD simulation to evaluate the stable
binding affinity of phytochemicals with their targets.
Emodin, which demonstrated a favorable binding energy
score (−8.9 kcal/mol) with the target ESR1 in docking
studies, was chosen for the MD simulation. MD simulations
provide a dynamic perspective on the interaction between
ligands and their targets, complementing the static view
offered by docking studies [69].

The RMSD parameter was utilized to examine the
stability of the protein-ligand complex over 100 ns.
RMSD is a measure of the average distance between
atoms of superimposed proteins and is commonly used to
assess the stability of protein structures and protein-
ligand complexes in MD simulations [70]. The RMSD of
the atoms in the ligand, ligand fit to protein backbone, and
protein backbone exhibited similar patterns of fluctuation
during most of the simulation period. The RMSD of
ligand fit to protein backbone and protein backbone dis-
played an initial increase followed by stability throughout
the simulation.

Notably, the RMSD of the ligand (Fig. 12, black) was
slightly lower than that of the ligand fit to protein backbone
(Fig. 12, green), indicating a conformational change of the
target protein in the protein-ligand complex upon binding.
This is a common observation in MD simulations, where
ligands often induce conformational changes in the protein
structure, enhancing the stability of the complex [71, 72].
The protein-ligand complex (Fig. 12, green) remained
relatively stable throughout the simulation, indicating tight
binding between the ligand and the receptor.

Fig. 10 Distribution of centrality values in the CODA network and
targets associated with R. abyssinicus Jacq. A Distribution of degree
centrality values across the CODA network, highlighting the top 1% of
nodes. Among these, 22 targets associated with R. abyssinicus Jacq.

were identified. B Distribution of eigenvector centrality values across
the CODA network, focusing on the top 1% of nodes. The same 22
targets related to R. abyssinicus Jacq. were extracted from this subset
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Additionally, the Radius of gyration (Rg) analysis con-
firmed that the protein structures were largely unaffected by
the binding region over the simulation period (Fig. 13). Rg
measures the compactness of the protein structure and is
another indicator of structural stability [71]. The consistent
Rg values suggest that the protein maintained its structural
integrity upon ligand binding, further supporting the stabi-
lity of the protein-ligand complex.

Furthermore, the hydrogen bonds formed between the
ligand and the protein play a crucial role in the stability of
the complex. Hydrogen bonds contribute significantly to the
binding energy and specificity of the interactions [73, 74].
The hydrophobic interactions, which reduce the free energy
of the system, also play an essential role in maintaining the
stability of the complex [75].

These findings suggest a stable interaction between the
phytochemical and the target protein, supporting the potential
therapeutic significance of the compound. The combined

insights from docking studies and MD simulations provide a
robust framework for understanding the molecular basis of
the observed binding affinities, highlighting the importance
of both hydrogen bonding and hydrophobic interactions in
stabilizing the protein-ligand complexes [76, 77].

Overall, the integration of docking studies with MD
simulations offers a comprehensive approach to validating
the stability and potential efficacy of phytochemicals, such
as Emodin, in targeting specific proteins. This approach
underscores the therapeutic relevance of these compounds
in traditional medicine and supports further experimental
validation [78].

Conclusions

Our study aimed to identify and validate significant asso-
ciations between human diseases and medicinal materials

Fig. 11 Molecular docking analysis of select phytochemicals from R.
abyssinicus Jacq. with their corresponding targets. (A1–E1) 3D
visualization of interactions between selected phytochemicals and their

corresponding targets. (A2–E2) 3D pose views of phytochemicals and
their interacting residues, with targets removed to clearly show the
interaction sites
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used in Ethiopian traditional medicine prescriptions, ulti-
mately aiming to identify reliable therapeutic medicines for
common human diseases. Through association rule mining,
we successfully identified notable associations, including a
significant association between R. abyssinicus Jacq. and
wound healing.

To further support these findings, we conducted in silico
analysis to explore the molecular-level associations between
the phytochemicals in R. abyssinicus Jacq. and various
therapeutic targets, pathways, and biological processes.
This analysis revealed 756 associated targets enriched
across diverse KEGG pathways and GO terms, indicating
potential therapeutic effects against a broad spectrum of

diseases, including cancer, metabolic disorders, endocrine
diseases, inflammation, immune system diseases, congenital
malformations, respiratory issues, and neurological condi-
tions. Network analysis using the CODA network high-
lighted key hub target genes linked with R. abyssinicus
Jacq.‘s phytochemicals, emphasizing their role in wound
healing. Molecular docking and molecular dynamics
simulations further supported these findings by confirming
stable binding interactions between the phytochemicals and
the identified hub targets.

In summary, our in silico and network analysis robustly
validate the association rule mining results and the tradi-
tional therapeutic applications of R. abyssinicus Jacq. in
wound treatment. However, to fully confirm these results,
controlled experimental studies on the pharmacological
effects of R. abyssinicus Jacq. phytochemicals are necessary
[37].

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s12013-024-01478-4.
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Fig. 12 Root Mean Square Deviation (RMSD) plots of ligand and
target protein backbone. RMSD plots showing the deviation of the
ligand (emodin) (black), the target protein backbone (ESR1) (red), and
the ligand fit to the backbone (green) over 100 ns of molecular
dynamics simulation

Fig. 13 Radius of gyration (Rg) plots. Plots of the radius of gyration
(Rg, in nm) for the ligand (emodin) (Rg), the target protein backbone
(ESR1) (RgX), and the entire system (RgY) over 100 ns of simulation
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TM Traditional Medicine
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LBDD Ligand-Based Drug Design
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