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Abstract 
Community cohesion plays a critical role in the determination of an individual’s health in social science. Intriguingly, a community 
structure of gene networks indicates that the concept of community cohesion could be applied between the genes as well to overcome 
the limitations of single gene-based biomarkers for precision oncology. Here, we develop community cohesion scores which precisely 
quantify the community ability to retain the interactions between the genes and their cellular functions in each individualized gene 
network. Using breast cancer as a proof-of-concept study, we measure the community cohesion score profiles of 950 case samples and 
predict the individualized therapeutic targets in 2-fold. First, we prioritize them by finding druggable genes present in the community 
with the most and relatively decreased scores in each individual. Then, we pinpoint more individualized therapeutic targets by 
discovering the genes which greatly contribute to the community cohesion looseness in each individualized gene network. Compared 
with the previous approaches, the community cohesion scores show at least four times higher performance in predicting effective 
individualized chemotherapy targets based on drug sensitivity data. Furthermore, the community cohesion scores successfully discover 
the known breast cancer subtypes and we suggest new targeted therapy targets for triple negative breast cancer (e.g. KIT and GABRP). 
Lastly, we demonstrate that the community cohesion scores can predict tamoxifen responses in ER+ breast cancer and suggest potential 
combination therapies (e.g. NAMPT and RXRA inhibitors) to reduce endocrine therapy resistance based on individualized characteristics. 
Our method opens new perspectives for the biomarker development in precision oncology. 
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INTRODUCTION 
In social science, there has been much emphasis on the role 
of community cohesion in the determination of an individual’s 
health. Previous studies found that social ties reduce the risk of 
diseases and mortality [1–3]. Intriguingly, the concept of com-
munity cohesion could be applied between the genes as well. 
Underneath this lies a community structure of gene networks, a 
property that the genes involved in the same cellular functions 
actively interact with each other [4, 5]. In addition, there are 
growing pieces of evidence that the interactions between the 
genes are hindered in disease states [6–8]. Given these, considering 
how the genes lose their community cohesion could yield new 
insights into biomarker discovery. 

However, till now, most of the efforts to discover the biomarkers 
for precision oncology mainly focused on genetic mutations and 
abnormal gene expressions of a single gene or a few [9–11]. Unfor-
tunately, the single gene-based biomarkers have unveiled their 
inherent limitations that they are not enough to fully elucidate 
heterogeneity and complexity of oncogenesis. Consequently, the 
limited number of cancer patients take advantage of them in 
clinical practice. For example, only 19% of the cancer patients 
benefit from the actionable genetic mutations which have the 
corresponding treatments according to a recent survey [12]. 

In line with this, there is an urgent need to develop community-
based biomarkers to overcome the limitations of the single-gene 
based biomarkers [13]. In the community-based biomarkers, each 
community in the gene networks is regarded as a cellular func-
tional unit and the functionality of the corresponding community 
is measured by comprehensively considered multiple genes. Many 
studies showed that the community-based biomarkers achieve 
greater predictive power and reproducibility compared with the 
single-gene based biomarkers [13] in terms of predicting the 
disease states [14, 15] or prognosis [16, 17]. 

Despite this achievement, the current community-based 
biomarkers have a limitation that they are node-centric approaches, 
which basically averaged the expression levels of the genes 
present in the communities. However, even if the two genes 
are abnormally expressed identically, the impact on community 
cohesion may differ depending on how they are interacting 
with other genes in the community [18, 19]. For example, the 
genes which interact with a greater number of the genes (e.g. 
hub genes) would have a greater impact on the community 
cohesion looseness when they are abnormally expressed. 
Hence, rather than simply aggregating the expression levels 
of the genes, considering the individual characteristics shown 
in the community cohesion looseness in the gene networks 
could fill a niche in the community-based biomarker discovery
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(Supplementary Figure S1). Fortunately, the recent individualized 
gene network estimation methods [20–22] suggest possibilities to 
identify the individualized perturbed interactions. 

Here we developed community cohesion scores which capture 
unique characteristics of the community cohesion looseness in 
the individualized gene network. To this end, we first estimated 
the individualized gene network by identifying individualized per-
turbed interactions which are deviated from co-expression pat-
terns in normal tissues. Next, in each individualized gene network, 
we measured the community cohesion scores which precisely 
quantify the community ability to retain the normal interactions 
between the genes and their cellular functions. Using breast 
cancer as a proof-of-concept study to illustrate our method, we 
showed that the community cohesion scores can be used in 
various aspects of precision oncology by finding the communities 
which significantly lose their cohesions and by finding the genes 
which greatly contribute to the community cohesion looseness in 
each individual. 

MATERIALS AND METHODS 
Overview 
Our method requires as input a user-provided single gene 
expression sample (a case sample) to estimate the individualized 
gene networks and to measure the community cohesion scores 
(Figure 1). To this end, we first constructed a normal tissue 
gene network (tissue-specific weighted co-expression network) 
and found co-expressed communities using publicly available 
normal gene expression profiles (control samples) (Figure 1A). 
Next, among the interactions in each community of the 
normal tissue gene network, we identified the individualized 
perturbed interactions of the case sample, which are deviated 
from the co-expression patterns in the normal tissue gene 
network (Figure 1B). Then, we estimated the individualized gene 
network by removing the individualized perturbed interactions 
from the normal tissue gene network (Figure 1C). The final 
output of our method is community cohesion scores which 
precisely quantify the decreased cellular functionality of each 
community in the individualized gene network of the case 
sample (Figure 1D). The community cohesion scores are used 
to discover therapeutic and prognostic biomarkers to predict 
individualized drug targets and resistance for precision oncology 
(Figure 1E). 

Constructing the normal tissue gene network 
and detecting the communities 
We constructed the normal tissue gene network which can repre-
sent biological systems of the normal tissue. We used the normal 
gene expression profiles (control samples) obtained from pub-
licly available databases (e.g. GTEx [23]) and weighted gene co-
expression network analysis (WGCNA) [24, 25] to construct the 
normal tissue gene network (Figure 1A and Supplementary Figure 
S2). First of all, we divided the control samples into a training set 
(80%) and a test set (20%). Using the training set, we determined 
parameters (pickSoftThreshold) to calculate adjacency matrix 
(adjacency) and weight matrix (TOMsimilarity). Then, we found 
the co-expressed communities which are highly interconnected 
with each other using the weight matrix as input features of 
hierarchical clustering (hclust, cutreeDynamic) [5]. Moreover, per-
mutation test was conducted to ensure the significance of each 
community using the test set (communityPreservation). We only 
considered the communities that are significantly preserved in 
the test set (preservation Zsummary >10). In addition, as the 

WGCNA provides the weights of all gene pairs even though they 
are close to zero (fully connected), we remained only top 10% 
interactions of the largest weights in each community. It enables 
to sort out more reliable gene interactions [24] and make the com-
parable size of networks with interactomes which are frequently 
used in network biology [26–28]. 

Modeling the correlations of interactions through 
simple linear regression and measuring 
perpendicular distance distributions of the 
control samples 
To estimate individualized perturbed interactions, we first made 
perpendicular distance distributions of the control samples for 
each interaction in the normal tissue gene network (Figure 1B). 
To this end, we performed modeling of the correlations of each 
interaction (X, Y) through simple linear regression models and the 
control samples (Supplementary Figure S5). 

Ŷ = β0 + β1X (1) 

Then, using the gene expression levels of gene X and Y (xi, yi) in  
the control sample i, we measured the perpendicular distance (di) 
which refers to the distances between the actual gene expression 
levels and the simple linear regression models. 

di =
∣∣β1xi − yi + β0

∣∣
√

β2 
1 + 1 

(2) 

By collecting these perpendicular distances of all control 
samples, we made the distributions of every interactions. Then, 

median ( 
∼ 
d) and median absolute deviation (MAD) were measured 

to characterize each distribution [29] (Supplementary Figure 
S5). We used Python library scipy (version 1.6.2) to model the 
simple linear regression models and measure median and median 
absolute deviation of the perpendicular distances. 

Estimating the individualized gene network 
Next, we estimated the individualized gene network using a single 
gene expression sample (a case sample) by identifying individual-
ized perturbed interactions deviated from co-expression patterns 
of the normal tissue. Using the gene expression levels of gene X 
and Y (xj, yj) in the case sample j, we measured the perpendicular 
distance

(
dj

)
which refers to the difference between the actual 

gene expression levels and the simple linear regression modeled 
with the control samples in the previous section (Supplementary 
Figure S5). 

di =
∣∣β1xj − yj + β0

∣∣
√

β2 
1 + 1 

(3) 

Then, to evaluate the significance of the perpendicular dis-
tance of the case samples compared with the distributions esti-
mated using the control samples, we measured modified z-scores 
of the perpendicular distance of the case sample which are less 
affected by outliers than traditional z-score. 

Modified zscorej = 
dj − d̃ 

1.486 ∗ MAD 
(4) 

The interactions were considered as individualized perturbed 
interactions if P-value is statistically significant in one-tailed tests 
(P-value <0.001). Finally, the individualized gene network was esti-
mated by removing these individualized perturbed interactions
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Figure 1. Overall methods (A) The normal tissue gene networks were constructed using the gene expression profiles of the control samples and the co-
expressed communities were detected. (B), (C) The individualized gene network was estimated by identifying the individualized perturbed interactions 
deviated from co-expression patterns in the normal tissue. (D) The community cohesion scores, which precisely quantify the community ability to retain 
the normal interactions between the genes and their cellular functions, were used (E) to discovery biomarkers for precision oncology. 

from the normal tissue gene network ( Figure 1C). We used Python 
library networkx (version 2.5.1) to for this procedure. 

Measuring the community cohesion scores 
To more accurately quantify the impact of the individualized 
perturbed interactions on community cohesion looseness in the 
individualized gene network, we used network efficiency. The 
network efficiency is a measure of the global complex network 
capacity to deliver information among nodes and allows a pre-
cise quantitative evaluation of the weighted network functioning 
[30–32]. We applied the network efficiency to each community 
because we regarded each community as a cellular functional 

unit. The network efficiency of kth community in each individ-
ualized gene network was calculated as follows (Supplementary 
Figure S6): 

Network efficiencyk =
1 

N (N − 1)

∑

X�=Y∈Gk 

1 
d (X, Y) 

(5) 

where Gk and N are the set and the number of nodes in kth com-
munity, respectively. d (X, Y) is the length of the weighted shortest 
path between node Xand Y. If the two nodes are disconnected 
in the network, d (X, Y) was set as 0. The weighted shortest path 
is computed as the minimum sum of the inverse interactions
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weights to travel among nodes [33]. 

Community cohesion scorek = 

Network efficiencyk in the individualized gene network 
Network efficiencyk in the normal tissue gene network 

(6) 

Finally, the community cohesion score of kth community was 
defined as the decreased ratio of Network efficiencyk in the indi-
vidualized gene network compared with the Network efficiencyk of 
the normal tissue gene network (equation 6 and Supplementary 
Figure S6). Consequently, each case sample has the same number 
of community cohesion scores with the number of communities 
in the normal tissue gene network (Figure 1D). We used Python 
library networkx (version 2.5.1) to calculate the network effi-
ciency. 

Measuring the connectivity loss of the druggable 
genes in each individualized gene network 
To identify the gene that greatly contributes to the community 
cohesion looseness in each individualized gene network, we mea-
sured connectivity loss of the druggable genes. The connectivity 
loss score of each druggable gene was defined as the weight 
summation of individualized perturbed interactions in each indi-
vidualized gene network divided by the summation of interaction 
weights in the normal tissue gene network (equation 7). 

Connectivity loss scorex =
∑

m∈ex 
wm∑

m∈Ex 
wm 

(7) 

where Ex and ex are the set of total interactions of genex in the 
normal tissue gene network and the individualized perturbed 
interactions of gene x in each individualized gene network, respec-
tively. In other words, ex is the subset of Ex and wm indicates 
the weights of the mth interactions. If the connectivity loss of 
two genes are identical, the individualized therapeutic targets are 
prioritized by the connectivity of the druggable genes. 

RESULTS 
We used breast cancer as a proof-of-concept study to illustrate 
our method. We constructed the normal breast tissue gene net-
work using 459 control samples (gene expression samples of 
normal breast tissue) obtained from GTEx [23] (data process-
ing details in Supplementary Methods). We discovered 27 co-
expressed communities (BrC1–BrC27) and the 23 communities 
were highly preserved ranging in size between 59 and 899 genes 
after the remaining interactions with the largest weights in the 
normal breast tissue gene network (Supplementary Figure S2 
and Supplementary Tables S1–3). After gene expression normal-
ization to remove batch effects (Supplementary materials and 
Supplementary Figures S3 and S4), we estimated the individual-
ized gene networks and measured the 23 community cohesion 
scores of each of the 685 case samples (113 normal breast tissue 
and 572 breast cancer tissue samples, Supplementary Figure S7), 
134 case samples (50 normal breast tissue and 84 breast cancer 
tissue samples), 181 case samples (181 tamoxifen-treated ER+ 
breast cancer tissue samples) and 50 case samples (50 breast can-
cer cell-line samples) obtained from TCGA BRCA [34], GSE58135 
[35], GSE6532 [36] and  GDSC [37], respectively (data processing 
details in Supplementary Methods). Using the 23 community 
cohesion scores of the case samples, we successfully prioritized 
the individualized effect chemotherapy drugs using the com-
munity cohesion scores of the case samples. In addition, we 

demonstrated that the community cohesion scores can be used 
to discover subtype-specific therapeutic targets. In addition, we 
showed that the community cohesion scores can suggest poten-
tial molecular mechanisms of the individualized drug resistance. 

The breast cancer samples show the most 
decreased community cohesion scores in the cell 
cycle-related community 
We briefly confirmed the robustness of community cohesion 
scores through greater prediction performance and reproducibil-
ity than the single-gene based biomarkers and the node-centric 
community-based biomarkers in breast cancer classification 
using the normal breast tissue and breast cancer tissue samples of 
TCGA BRCA (training and validation set) and GSE58135 (indepen-
dent test set) (Supplementary Methods and Supplementary Figure 
S8). We discovered that the community cohesion scores of the 
BrC19 (73 genes and 1002 interactions) were the most important 
features to distinguish the breast cancer tissue samples from 
normal breast tissue samples according to the feature importance 
of the logistic regression models. We also observed that the 
community cohesion scores of the BrC19 significantly decreased 
in the breast cancer tissue samples than the normal breast 
tissue samples using TCGA BRCA (Wilcoxon rank-sum test, P-
value = 2.72E-60) and GSE58135 datasets (Wilcoxon rank-sum test, 
P-value = 3.62E-19) (Figure 2A). In addition, we confirmed that 
they also decreased according to the progression of the breast 
cancer by comparing the community cohesion scores of stage 
1 and stage 2–4 samples (Figure 2B, Wilcoxon rank-sum test, P-
value = 1.38E-4). In addition, we observed that BrC19 is associated 
with cell cycle-related terms (Figure 2C, Supplementary Methods 
and Supplementary Table S4). Given that the dysfunction of cell 
cycle is the hallmarks of cancer, these results highlight that the 
community cohesion scores successfully represent the individual 
disease states and the molecular mechanisms related to the 
diseases. 

The community cohesion scores can be used as 
therapeutic markers to prioritize individualized 
effective chemotherapy drugs 
In addition, we obtained target gene information of approved 
and experimental anti-cancer drugs obtained from GDSC (542 
compounds associated with 329 therapeutic targets) and mea-
sured the ratio of anti-cancer drug targets in each community. 
As a result, we observed that the BrC19 contains the highest 
ratio of anti-cancer drug targets (12.3%, Figure 2D). Based on 
this result, we hypothesized that the community cohesion scores 
could be used as therapeutic biomarkers to prioritize the indi-
vidualized effective chemotherapy drugs, which target cell-cycle 
related biological pathways. For example, according to the ther-
apeutic target information of GDSC, we observed that there are 
nine druggable genes (AURKA, AURKB, BIRC5, CDK1, KIF11, PLK1, 
TOP2A, TTK and TYMS) in the BrC19 (Figure 3A) and  they are  
targeted by 28 FDA-approved and experimental anticancer drugs 
(Supplementary Table S6). We hypothesized that targeting these 
druggable genes present in the BrC19 could be more effective than 
targeting the other druggable genes. 

Furthermore, we hypothesized that, even though all breast can-
cer tissue samples show the most decreased community cohesion 
scores in the BrC19, the druggable genes that greatly contribute 
to the community cohesion looseness of the BrC19 could differ 
in each case sample. For example, breast cancer tissue sample 
(TCGA-AC-A2FM-01A) has the 911 individualized perturbed inter-
actions among the 1002 interactions in the BrC19 and shows
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Figure 2. Community cohesion scores as diagnostic biomarkers to distinguish bewteen the normal breast and breast cancer tissue samples The 
community cohesion scores of the BrC19 were compared between the normal breast tissue samples and the breast cancer tissue samples using (A) 
TCGA BRCA and (B) GSE58135 datasets. (B) The community cohesion scores of the BrC19 were compared between the breast cancer tissue samples of 
stage 1 versus the samples of stage 2–4. (C) The bar plot showed the results of gene-set enrichment analysis of the genes belonged to the BrC19. (D) The 
ratio of anti-cancer drug targets in each community was represented as a bar plot. 

the greatly decreased community cohesion scores (0.170) of the 
BrC19. Especially, four druggable genes lose all its connectivity 
(AURKB, KIF11, TOP2A and TTK) in the individualized gene net-
work of the breast tissue sample ( Figure 3A). Hence, we next 
turned to confirm that targeting these individualized therapeutic 
targets that greatly contribute to the community cohesion scores 
(high connectivity loss score) in each individualized gene network 
could be more effective in terms or prioritizing the chemotherapy 
drug targets. 

To validate these hypotheses, we used 23 community cohesion 
scores of 50 breast cancer cell-line samples and their drug 
sensitivity data from GDSC. We observed that each of the 50 breast 
cancer cell-line samples also show the decreased community 
cohesion scores in the BrC19 (Figure 3B). More importantly, 
when all anti-cancer drugs in the GDSC were considered, the 
average IC50 values in the 50 breast cancer cell-lines were 
294.14μM (Figure 3C). However, the average IC50 values were 
significantly decreased to 35.087μM when only the 28 drugs 
targeting the genes present in the BrC19 were considered 
(Wilcoxon rank-sum test, P-value = 2.55E-17) (Figure 3C). In 
addition, we observed that 40 and 10 breast cancer cell-lines 
samples show the highest connectivity loss score of KIF11 and 
AURKA, respectively (Figure 3D). Remarkably, we confirmed that 
the average IC50 values of the drugs targeting these individualized 
therapeutic targets in each cell-line sample decreased dramati-
cally to 10.372μM (Wilcoxon rank-sum test, P-value = 1.26E-10) 
(Figure 3C). 

Given that the average IC50 values of the drugs targeting TYMS 
(e.g. Methotrexate), which are already approved chemotherapy 
drugs for breast cancer [38], were 64.155μM in 50 breast cancer 
cell-line samples, these results highlights that the drugs tar-
geting KIF11 and AURKA also could be effective individualized 
chemotherapy drugs for breast cancer. Interestingly, anti-cancer 
drugs targeting AURKA (e.g. Alisertib) are recently considered as 
potential therapeutic options [39]. 

The community cohesion scores are superior to 
the previous individualized gene network 
estimation methods in terms of prioritizing 
individualized therapeutic targets 
Furthermore, we wanted to compare our method with the gene 
expression profiles and the previous individualized gene network 
estimation methods in terms of prioritizing the individualized 
therapeutic targets. In the case of gene expression profiles, we 
normalized the gene expression profiles of the 50 breast cancer 
cell-line samples to z-scores and prioritized the individualized 
therapeutic targets which show the largest absolute value of z-
scores in each sample. In the case of previous individualized gene 
network estimation methods, we estimated the individualized 
gene networks using SSN [20], LIONESS [21] and SWEET [22] meth-
ods. Then, we prioritized the individualized therapeutic targets 
based on the connectivity of the targets (hub genes) [20] or the  
shortest average path length of the targets to the hub genes in 
each individualized gene network [22].
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Figure 3. Community cohesion scores as therapeutic biomarkers to prioritize the individualized chemotherapy targets (A) The BrC19 of the normal 
breast tissue gene network was plotted. The nine druggable genes were denoted with gene symbols. The BrC19 in the individualized gene network of 
the breast cancer tissue sample (TCGA-AC-A2FM-01A) is plotted. The druggable genes which lose all connectivity are represented as empty circle in 
each individualized gene network. The human and cell figures were created with BioRender.com (B) The community cohesion scores of BrC19 in GDSC 
(50 breast cancer cell-line samples) were plotted. (C) The average IC50 values of all anti-cancer drugs, the anti-cancer drugs targeting the druggable 
genes present in the BrC19, and the anti-cancer drugs targeting the individualized therapeutic targets in the BrC19 were plotted. (D) The ratio of the 
individualized therapeutic targets in the BrC19 of the 50 breast cancer cell-line samples was plotted. (E) The average IC50 values were compared between 
when the individualized therapeutic targets are prioritized by the community cohesion scores, the previous individualized gene network construction 
methods and the gene expression profiles. 

As a result, we observed chemotherapy targets which are 
related to the cell cycle, such as CDK2, HDAC2 and BCL2, 
are predicted as the individualized therapeutic targets by the 
gene expressions and the previous individualized gene network 
estimation methods. Importantly, we confirmed that the drugs 
targeting the individualized therapeutic targets prioritized by 
them are significantly less effective than those prioritized by 
the community cohesion scores (P-value <0.001, Figure 3E, 
Supplementary Table S7 and Supplementary Figure S9). The 

community cohesion scores showed at least four times higher 
performance in predicting effective individualized chemotherapy 
targets on average. 

These results indicate that the community cohesion scores 
could be a more effective tool in terms of predicting the individ-
ualized therapeutic targets compared with the gene expression 
profiles and the previous individualized gene network estimation 
methods. In addition, taken together, we can predict the individ-
ualized therapeutic targets based on the community cohesion
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scores for each individual patient in 2-fold. First, we can prioritize 
them through the druggable genes present in the community with 
the significantly decreased community cohesion scores. Then, we 
can pinpoint more individualized therapeutic targets by discover-
ing the genes that greatly contribute to the community cohesion 
looseness in each individualized gene network. 

The community cohesion scores can be used to 
discover the disease subtypes and 
subtype-specific therapeutic targets 
In the previous section, we showed that the community cohe-
sion scores successfully prioritize the individualized chemother-
apy targets. However, the chemotherapy could have serious toxic 
effects because they do not distinguish between normal cells and 
cancer cell [40]. Recently, targeted therapy which targets the genes 
that are abnormally expressed in a specific cancer subtype plays a 
critical role in reinforcing the conventional cytotoxic chemother-
apy [11, 40, 41]. Hence, we next explored whether the community 
cohesion scores could discover the known breast cancer subtypes 
and prioritize the subtype-specific therapeutic targets. To this 
end, we used the community cohesion scores of 390 hormone 
receptor positive (ER+ and/or PR+, HER2-) breast cancer tissue 
samples (HR+ samples) and 99 triple negative breast cancer tissue 
(ER- and PR-, HER2-) samples (TNBC samples) from TCGA BRCA, 
which are the most distinct breast cancer subtypes based on 
immunohistochemistry (IHC) assay. 

First of all, we divided the samples into two clusters using the 
community cohesion scores (hierarchical clustering, Supplementary 
Methods). As a result, 390 samples and 99 samples were clustered 
into the first and second clusters, respectively (Figure 4A). 
Notable, the clustering results were significantly similar with 
the IHC-based subtypes (Chi-square test, P-value = 4.56E-75) 
(Figure 4A). The first and second cluster were mostly composed 
of HR+ samples and TNBC samples, respectively. However, when 
the samples are clustered using the gene expression profiles, the 
distinct disease subtypes were not detected (Chi-square test, P-
value = 0.339, Figure 4A). 

Next, we explored the communities which are differently losing 
their community cohesions in the two clusters identified by the 
community cohesion scores. Among the 23 communities in the 
breast tissue, the community cohesion scores of the 18 commu-
nities were significantly different in the two clusters. Especially, 
the community cohesion scores of the BrC12 were significantly 
lower in the first cluster which is associated with HR+ breast 
cancer (Figure 4B). Interestingly, we found that the BrC12 contains 
ESR1, which is the target of endocrine therapy of HR+ breast 
cancer [42]. Furthermore, we more specifically explored whether 
ESR1 could be prioritized by the connectivity loss scores (Materials 
and Methods). For this, we compared the connectivity loss scores 
of eight druggable genes (CECR2, ESR1, ERBB4, FGFR3, FGFR4, 
PRKAA2, RPS6KA3 and SGK3) present in the BrC12 between the 
individualized gene networks of the samples belonging to the first 
and second clusters. As a result, we found that every eight drug-
gable genes show significantly different connectivity loss scores 
in the two clusters (P-value <0.0001). Especially, ESR1 most signif-
icantly lose its connectivity in the first clusters (P-value = 8.92E-51, 
Figure 4C). We also confirmed that HR+ breast cancer cell-lines 
[43] were significantly more sensitive to the drugs targeting ESR1 
than TNBC samples (P-value = 3.46E-04) using drug sensitivity 
data of GDSC (Figure 4D). 

Similarly, we sought to identify new targeted targets for 
TNBC which does not have subtype-specific targeted therapy. 
We observed that the community cohesion scores of the BrC24 

were significantly lower in the second cluster, which is associated 
with the TNBC (Figure 4B). According to the anti-cancer drug 
target information of GDSC, there are only one druggable gene 
(KIT) in the BrC24 and the connectivity loss scores of KIT was 
significantly larger in the individualized gene networks of the 
samples belonged to the second cluster (P-value = 1.24E-45, 
Figure 4C). In addition, we confirmed that the TNBC samples 
were significantly more sensitive to the drugs targeting KIT 
(P-value = 0.015, Figure 4D). Besides the druggable genes of the 
anticancer drugs in GDSC, we expanded the therapeutic targets 
using target information from DrugBank [44] and we discovered 
15 more therapeutic targets in the BrC24. Among them, the 
connectivity loss scores of GABRP was the most significantly 
larger in the samples belonged to the second clusters (P-
value = 2.62E-49, Figure 4C). Interestingly, there are growing pieces 
of evidence that GABRP could be a therapeutic target for TNBC 
[45–47]. 

In sum, we showed that the community cohesion scores are 
superior to the gene expression profiles in terms of discovering 
distinct subtypes of breast cancer. Furthermore, we successfully 
found the HR+ breast cancer specific targeted therapy target 
(ESR1) based on community cohesion scores which are signif-
icantly declined in the clusters which are associated with the 
HR+ breast cancer samples. Based on this result, we suggest new 
targeted therapy targets (e.g. KIT and GABRP) for TNBC, which has 
no subtype-specific therapeutic targets. 

The community cohesion scores can be used as 
prognostic makers to predict drug resistance and 
potential therapeutic targets for combination 
therapy 
In the previous section, we showed that the community cohesion 
scores can successfully prioritize the subtype-specific therapeu-
tic targets. Furthermore, we next turned to discover prognostic 
biomarkers which can predict drug resistance even in the same 
subtype of cancer using the community cohesion scores. To this 
end, we performed survival analysis of estrogen receptor posi-
tive (ER+) breast cancer patients treated with endocrine therapy, 
especially tamoxifen, to discover distinct prognostic subgroups. 
The endocrine therapy which targets ESR1 is considered as a 
first-line treatment for ER+ breast cancer patients [42]. However, 
the ER+ breast cancer patients show different prognosis due to 
the intrinsic and/or acquired resistance to the endocrine therapy. 
Therefore, more precise stratification method for the ER+ breast 
cancer is needed, which is able to predict the response to the 
endocrine therapy. 

To this end, we measured the community cohesion scores of 
181 tamoxifen-treated ER+ breast cancer tissue samples from 
GSE6532. Then, we divided the samples into two subgroups 
according to a threshold of the community cohesion scores in 
each community. We slightly incremented the threshold from 
zero to one (0.001) and find the optimal threshold which shows the 
most distinct prognostic difference between the two subgroups. 
We compared the 5-year recurrence free survival rate between 
the two subgroups using the Kaplan–Meier survival analysis and 
evaluated them through log-rank test (Supplementary Methods). 

As a result, three community (BrC8, BrC11 and BrC19) success-
fully discovered the prognostic subgroups (P-value <0.001 and 
Supplementary Table S7). Among them, the prognostic difference 
between the two subgroups was most distinct when the sam-
ples were divided according to the community cohesion scores 
of the BrC19 (Figure 5A, threshold = 0.143, P-value = 1.37e-06). We
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Figure 4. Community cohesion scores as therapeutic biomarkers to discover individualized subtype-specific targets (A) The results of hierarchical 
clustering using the community cohesion scores, the node-centric community-based biomarkers and gene expression profiles were plotted. (B) The 
statistical significance (Wilcoxon rank-sum test) of community cohesion score difference compared between the two clusters was plotted. (C) The 
connectivity loss of the druggable genes present in the BrC12 and BrC24 in the individualized gene networks of the HR+ breast cancer samples and the 
TNBC breast cancer samples was compared. The druggable genes obtained from DrugBank are denoted using ∗. (D) The IC50 values of the anticancer 
drugs targeting ESR1 and KIT in the HR+ breast cancer cell line samples and TNBC cell-line samples were compared. 

observed that the samples which lose much community cohe-
sions in the BrC19 show worse prognosis (n = 55). Interestingly, we 
already found that the BrC19 is associated with the molecular 
mechanisms of cancer (cell cycle) in the previous sections. It 
indicates that the serious dysfunction of the cell cycle processes 
could be regarded as the biomarker to endocrine therapy response 
prediction. 

In addition to the BrC19, the BrC11 (Figure 5B, threshold = 0.529, 
P-value = 1.14E-04) and the BrC8 (Figure 5C, threshold = 0.678, P-
value = 0.001) also successfully discover the distinct prognostic 
subgroups. Specifically, the samples that have the decreased com-
munity cohesion scores of the BrC11 (n = 102) and BrC8 (n = 111) 
showed the poor prognosis. These results indicate that the dys-
function of these communities neutralize the therapeutic effect 
of tamoxifen and the genes present in these community could 
be potential therapeutic targets to reduce resistances based on 
the individualized mechanisms of endocrine therapy resistance. 
For example, among the anti-cancer drug targets in the BrC11 
(Supplementary Table S6), it has been known that high expres-
sion of NAMPT (nicotinamide phosphoribosyl transferase) confers 
the tamoxifen resistance [48] and recently it is discovered that 
combination therapy of NAMPT inhibition and antiestrogen is 
effective to reduce breast cancer metastasis [49]. Similarly, there 
are several pieces of evidence that targeting both ESR1 and RXRA 
(retinoid X receptor alpha) present in BrC8 (Supplementary Table 
S6) decreases the tamoxifen resistance [50]. 

Given these, the combination therapy considering the indi-
vidualized mechanisms of endocrine therapy resistance could 
increase therapeutic effect of tamoxifen. For example, we sug-
gested a use case of community cohesion scores as compre-
hensive biomarkers for precision oncology in clinical practice 
(Figure 5D and 5E). The individualized therapeutic targets of this 
case sample could be prioritized by finding the genes greatly con-
tribute to the community cohesion looseness of disease-related 
(e.g. AURKA in the BrC19) or subtype-related community (e.g. 
ESR1 in the BrC12). In addition, the example sample showed the 
decreased community cohesion scores in the BrC11 and tamox-
ifen resistance is predicted. Hence, the gene present in the BrC11 
could be considered as potential combinatorial therapy to reduce 
tamoxifen resistance. 

DISCUSSION 
It has already been about 20 years since the concept of precision 
medicine appeared [51], and it is recently facing a new turning 
point with the advances of high-throughput technology and net-
work biology. They have taken us a step closer to understanding 
the underlying mechanisms of the complex diseases. Now, it is 
time to apply them in clinical practices for realizing the preci-
sion oncology. To satisfy this demand, we proposed community 
cohesion scores as the community-based biomarkers for precision 
oncology. To this end, we first estimated the individualized gene
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Figure 5. Community cohesion scores as prognostic biomarkers to predict drug resistance The Kaplan–Meier survival plots represented the prognostic 
subgroups of tamoxifen-treated ER+ breast cancer samples which are discovered by the community cohesion score thresholds in (A) BrC19, (B) BrC11 
and (C) BrC8. (D) The diagnostic, therapeutic and prognostic biomarkers discovered by community cohesion scores in breast cancer were depicted. (E) 
The example patient report of utilization of the community cohesion scores in the clinical practice was illustrated. The human and cell figures were 
created with BioRender.com. 

network by identifying the individualized perturbed interactions 
which are deviated from co-expression patterns of the normal 
tissue. Next, in each individualized gene network, we measured 
the community cohesion scores which precisely quantify of the 
community ability to retain the normal interactions between 
the genes and their cellular functions by applying the network 
efficiency in each community. 

However, there are several remaining challenges that should 
be considered in further studies. First, we determined the 
individualized perturbed interactions by evaluating whether the 
expression levels of the case sample are deviated from the co-
expression patterns in the normal tissue. However, we did not 
consider whether the perturbations were due to strengthening 
or weakening the co-expressions. The co-expressions that are 
strengthened or weakened in the disease-context could have 
different effects in the disease states and considering them 

differentially could enhance our method. In addition, our 
method requires transcriptomics data obtained from tissue 
biopsy. However, it has been demonstrated that multi-omics 
approaches could suggest a new insight in terms of understanding 
the complexity of the diseases [52]. Interestingly, it has been 
revealed that the genetic mutations enriched in the protein– 
protein interactions surface [8, 53] have greater implications in 
the disease context. Additionally, there are several experimental 
and computational methods which can predict protein–protein 
interaction dynamics in specific biological context [54–56]. In this 
perspective, the addition of dynamic protein–protein interaction 
changes resulting from genetic mutations enables our method 
to more accurately depict individualized characteristics shown 
in the community cohesion looseness. Meanwhile, the biological 
interactions could be dyanamically changed in a specific context 
and regular biopsy sampling is essential to detect dynamic
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biological interactions. However, invaisve tissue biopsy preculdes 
the regular sampling. Recently, blood has been in spotlight as a 
window into health and diseases [57, 58] and there are several 
methods which can predict tissue-specific gene expressions 
using whole blood transcriptomes [59–61]. The inferred tissue-
specific gene expressions from the noninvasive and regular whole 
blood samples enable our method to capture dynamics in the 
individualized gene networks. 

Despite of these challenges, we validated that the commu-
nity cohesion scores can be used as comprehensive biomarkers 
for precision oncology using breast cancer. We showed that the 
community cohesion scores are more robust biomarkers than 
single gene -based and node-centric community-based biomark-
ers through high reproducibility of breast cancer classification 
performance in the independent dataset. More importantly, we 
validated that the community cohesion scores successfully pre-
dict the individualized therapeutic targets in 2-fold; first by tar-
geting the genes present in the community with the significantly 
decreased community cohesion scores and second by targeting 
the gene which greatly contribute to the community cohesion 
looseness (e.g. connectivity loss scores). We also showed that our 
method is superior to the previous individualized gene network 
estimation methods and gene expression profiles in terms of 
prioritizing the individualized therapeutic targets. 

Furthermore, we demonstrated that the community cohesion 
scores successfully identified breast cancer subtypes (e.g. HR+ 
breast cancer and TNBC) and the subtype-specific therapeutic 
targets (e.g. ESR1 in the HR+ breast cancer) by exploring rel-
atively decreased community cohesion scores in each subtype. 
Based on this result, we suggested potential therapeutic targets 
for TNBC, such as KIT and GABRP. Additionally, we showed that 
the community cohesion scores can be used to predict the drug 
response and suggested the potential combination therapies (e.g. 
NADPT or RXRA inhibitors) to reduce tamoxifen resistance for 
ER+ breast cancer. Overall, these results highlight that the com-
munity cohesion scores can be used as the therapeutic and prog-
nostic biomarkers to precisely define the individual disease states 
and establish the treatment strategy. We hope that our method 
can contribute to accelerate the realization of precision oncology 
and can be applied to other complex diseases of which molec-
ular context is tissue-specific, complex and heterogeneous (e.g. 
cardiovascular disease and liver cirrhosis) beyond the precision 
oncology. 

Key Points 
• Community cohesion looseness in the social networks 

increases the risk of diseases and morality. Community 
cohesion scores apply the concept of community cohe-
sion to the gene networks to overcome the limitation of 
current single-gene based and node-centric community-
based biomarkers. 

• Community cohesion scores capture unique individual-
ized characteristics of the community cohesion loose-
ness by precisely quantifying the community ability to 
retain the interactions between the genes and their cel-
lular functions in each individualized gene network. 

• The individualized gene networks and community cohe-
sion scores of 950 breast cancer case samples were used 
to validate that the community cohesion scores can 
be used as comprehensive biomarkers to predict the 

individualized drug targets and resistance for precision 
oncology. 
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