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A B S T R A C T

Identifying molecular targets of a drug is an essential process for drug discovery and development. The
recent in-silico approaches are usually based on the structure information of chemicals and proteins. However,
3D structure information is hard to obtain and machine-learning methods using 2D structure suffer from
data imbalance problem. Here, we present a reverse tracking method from genes to target proteins using
drug-perturbed gene transcriptional profiles and multilayer molecular networks. We scored how well the
protein explains gene expression changes perturbed by a drug. We validated the protein scores of our
method in predicting known targets of drugs. Our method performs better than other methods using the gene
transcriptional profiles and shows the ability to suggest the molecular mechanism of drugs. Furthermore, our
method has the potential to predict targets for objects that do not have rigid structural information, such as
coronavirus.
1. Introduction

Identifying molecular targets of drugs is an essential process for
drug development regardless of discovery strategies. Most drugs are
derived from phenotypic screening methods so the molecular targets
are absent [1,2]. Target-based screening is another method that starts
with identified targets for a given therapeutic effect [3]. However, since
unintended targets are likely to exist, there have been many reports of
side effects [4,5]. There are several assay-based experiments to identify
targets of drugs, such as biochemical affinity purification or knocking
out genes [6]. However, these approaches are largely impractical, as
the experimental processes are time and labor-consuming [7]. There-
fore, computational approaches to predict targets for a given drug are
necessary.

Most recent computational approaches are focused on using molec-
ular structure information. Molecular docking is one of the repre-
sentative methods which simulates interactions between a drug and
its possible matching proteins [8]. This method shows high accuracy
and interpretability but requires significant computation resources and
often unavailable information, such as 3D structures of drugs and
proteins. The machine-learning-based approach is also promising in
predicting drug–target interactions. This approach shows relatively less
computation time, and prior knowledge of 3D structures of chemi-
cals, drugs, and proteins is unnecessary. However, due to the lack of
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non-interaction information, the drug–target prediction task only has
positively-labeled data. Thus, the performance of these methods relies
on how the negative samples are labeled [9,10].

An approach using transcriptome profiling was introduced due to
the many consortiums such as CMap LINCS [11], CCLE [12], and GDSC
[13]. This approach compares the similarity between gene expression
profiles from drugs [14] so, this method can only be used on drugs
with comprehensive reference gene expression profiles [15] and is not
appropriate to find de-novo targets. Network-based approaches such
as DeMAND [16] and ProTINA [17] have been proposed to over-
come the above problem. They constructed a bipartite network by
combining gene-regulatory network(GRN) and protein–protein interac-
tion(PPI) network to score target proteins. However, the network has
a loss of information because every protein can directly regulate the
associated genes and interactions between proteins are easily ignored.

Here, we suggest a reverse tracking method that measures the
propagations of a given drug-induced gene expression in multilayer
molecular networks to the target proteins. Our method uses the multi-
layer network to separate the role of transcription factors (TFs) and
the other proteins. We first scored transcription factors using gene-
regulatory interactions and additional drug perturbation data. Then,
we scored every protein using PPI network and the scores from the
previous step. The overall schema is depicted in Fig. 1. We show
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Fig. 1. Method overview. (A) From the expression data of a drug, get 𝑙𝑜𝑔2 fold-change value of genes. (B) Construct a gene-regulatory interaction network using tissue-specific
relations. (C) Using CMap LINCS data, calculate correlation coefficients of gene expressions between transcription factors and genes obtained from (B). From CMap LINCS, only
signatures in the same cell or tissue type with the original dataset in (A) were selected. (D) Based on the suggested scoring method, transcription factors in the network were
scored depending on how they are correlated with their coefficients and expression changes of their target genes. (E) Construct a protein–protein interaction network by integrating
three types of public databases and connecting all proteins, including transcription factors. (F) Propagate transcription factor scores through the interactions in the PPI network.
that our method performs better in predicting drug targets compared
to the previous state-of-the-art methods with three types of datasets:
anticancer drugs, genotoxic drugs, and the GPCR targeting agents.
We also suggest a potential molecular mechanism of drugs supported
by literature evidence. Furthermore, we show that our method could
be used to predict targets even when not having reliable structural
information using the SARS-CoV-2 case as an example.

2. Materials and methods

2.1. Preprocessing of data

2.1.1. Preprocessing of input expression data
We used drug perturbation datasets from NCI-DREAM synergy chal-

lenge [18], a genotoxicity study [19], and a GPCR targeting agents
study [20]. We obtained all datasets from Gene Expression Omnibus
(GEO) database [21] (accession number: GSE51068, GSE28878, and
GSE40017). Datasets from NCI-DREAM synergy challenge and genotox-
icity study were also used in the previous work, ProTINA [17]. The
dataset from GPCR targeting agents study was used to show an ad-
vantage of the transcriptome-based method. All datasets were quantile
normalized and transformed into 𝑙𝑜𝑔2 scale. Datasets from NCI-DREAM
synergy challenge and the genotoxicity study were preprocessed using
refine.bio [22]. The dataset from the GPCR study was already normal-
ized and into 𝑙𝑜𝑔2 transformed. We only selected genes with changes
that are statistically significant (adjusted 𝑝-values < 0.05)
2

2.1.2. Preprocessing of CMap data
We downloaded CMap LINCS [23] data, which contains the largest

compound-induced gene expression profiles with the number of com-
pounds and cell-lines. We used level 5 processed data which includes
replicate-collapsed z-score profiles of 12,328 gene expression levels.
Only the signatures that satisfied CMap quality control criteria [11]
were selected.

2.2. Construction of multilayer network

We used the PPI network to utilize the relationships between drug
targets and their interacting proteins and GRN to associate the TFs
related to gene expression changes. BioGRID [24], KEGG [25], and En-
doNet [26] were used to build the PPI network. For BioGRID, we down-
loaded a tab-separated text file from release 4.4.198 from the web-
site (https://downloads.thebiogrid.org/BioGRID). We used only human
PPIs whose taxonomy ID is ‘9606’ (meaning Homo sapiens) and took
465,537 interactions between 18,897 entities from BioGRID. For KEGG,
we downloaded text files in XML format using KEGG’s official REST API
(http://rest.kegg.jp/). We selected relations labeled ‘PPrel’ (meaning
protein–protein interaction) and converted KEGG ID to Entrez ID using
KEGG API. We took 47,550 interactions between 4,129 entities from
KEGG. For EndoNet, we downloaded a text file in XML format (En-
doNet.xgmml) from the EndoNet website (http://endonet.bioinf.med.
uni-goettingen.de). We took 1,160 interactions between 781 entities
from EndoNet by obtaining only relations whose both nodes have
matched gene symbols. We used a mapping file between gene symbol

https://downloads.thebiogrid.org/BioGRID
http://rest.kegg.jp/
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Fig. 2. The concept of scoring method. (A) shows how transcription factors are scored. 𝑎𝑖𝑗 represent a correlation coefficient value between transcription factor 𝑖 and gene 𝑗
and 𝐹𝐶(𝐺𝑗 ) is the fold-change value of gene 𝑗. The red-colored arrow means a positive correlation; the blue-colored means a negative correlation between them; the dotted arrow
means that the given pair is not correlated. At the top, the 𝑇𝐹1 is correlated with all its targeting genes while 𝑇𝐹2 is not correlated at all. The summation of each score of 𝑇𝐹1
becomes positive and is more explainable than 𝑇𝐹2. In the bottom, both 𝑇𝐹3 and 𝑇𝐹4 explain the gene expression changes well, but 𝐺3 and 𝐺4 are already regulated by other
TFs. So, 𝑇𝐹3 become more explainable than 𝑇𝐹4. (B) shows how target proteins are scored. Protein(𝑃𝑖)s and transcription factor(𝑇𝐹𝑗 )s are located in the PPI network. 𝑃1 is more
closely located with the high-scored transcription factors, so the score also is higher than 𝑃2.
and Entrez gene ID downloaded from the NCBI website (https://ftp.
ncbi.nih.gov/gene/DATA/gene-info.gz). We converted entities repre-
sented as gene symbols into Entrez gene ID, and we used a union set of
all PPIs obtained from the above databases. In total, the PPI network
contains 514,247 interactions between 19,392 entities.

We acquired tissue-specific gene regulation data from the study [27]
which provides TF-gene interactions of 41 types of tissues and cell-
lines to build the GRN. Among 41 types of tissues and cell-lines, we
only used TF-gene interactions from lymphoblastoid cell-line (as NCI-
DREAM synergy challenge data uses OCI-LY3 cell-line), liver (for the
genotoxicity study using HepG2 cell-line) and colon (for the GPCR
study using SW480 cell-line). For the analysis, only TF-gene inter-
actions with a prior score are 1 were selected. The prior score of
1 indicates that the interaction is already known and not inferred.
Finally, interactions whose TFs were not in the nodes of constructed PPI
network were excluded to combine two types of molecular networks.
In total, we obtained tissue-specific TF-gene interactions for human
lymphoma, hepatocellular carcinoma cell, and colon carcinoma cell,
each with 7,849 interactions between 601 TFs and 2,238 genes, 2,765
interactions between 467 TFs and 1,204 genes, and 12,593 interactions
between 583 TFs and 4,162 genes respectively.

2.3. Scoring method

Our scoring method considers the change in gene expression profile
as a result of the perturbation of drug targets. TFs make gene regulation
but the other proteins do not make and most known drug targets are not
TFs. (See Supplementary Figure 1) So, we separated the roles of TFs
and the other proteins(targets) in drug perturbation and scored them
differently: TFs are scored only through the protein–gene interactions
and proteins(including targets) are scored through the PPIs and from
the scores of the TFs. This scores proteins based on how well the protein
explains the outcome of perturbed gene expression through the con-
structed multilayer molecular network. To capture these perturbations
3

by drug targets, our scoring method consists of two steps (Fig. 2). First
is getting TFs which can explain the change of gene expression well.
The second is getting candidate target proteins that are closely located
in TFs with high scores in the previous step.

2.3.1. Scoring of transcription factors
To know which TF can potentially explain the cause of perturbation

in an input expression data well, we designed a score function to
measure the explainability of a particular TF.

𝑆(𝑇𝐹𝑖) =
𝑛
∑

𝑗=1

𝑟𝑇𝐹𝑖 .𝑔𝑗 ⋅ 𝑙𝑜𝑔2𝐹𝐶𝑔𝑗

𝑚𝑔𝑗
(1)

In the Eq. (1), 𝑔𝑗 means targeted genes of 𝑇𝐹𝑖, and 𝑟𝑇𝐹𝑖 ,𝑔𝑗 means cor-
relation coefficient between 𝑇𝐹𝑖 and 𝑔𝑗 . Fold-change value of expres-
sion of 𝑔𝑗 represent 𝐹𝐶𝑔𝑗 , and 𝑚𝑔𝑗 means the number of transcription
factors which regulate 𝑔𝑗 . The higher the score of our score function
is, the more explainable the transcription factor is to gene expression.
Fig. 2(A) shows the process. Each TF is assigned a score based on
how much each targeting gene’s 𝑙𝑜𝑔2 fold-change value matches the
correlation coefficient calculated from CMap LINCS. If the 𝑙𝑜𝑔2 fold-
change value of a targeted gene and the correlation between the TF
and the gene share the same direction (both positive or both negative),
it can be reasonably assumed that the TF explains the gene expression
[17]. We also consider the targeted gene itself, as the gene which is
already regulated by many other TFs [28] will have lower explanatory
power [29]. Therefore, we set a normalization term in our scoring
function to reflect this assumption.

2.3.2. Correlation coefficients between a transcription factor and gene
We calculated the Pearson correlation coefficients by using the

method from the study of Zaborowski et al. [30], which used expression
values of genes and TFs from microarray data. We applied the same

https://ftp.ncbi.nih.gov/gene/DATA/gene-info.gz
https://ftp.ncbi.nih.gov/gene/DATA/gene-info.gz
https://ftp.ncbi.nih.gov/gene/DATA/gene-info.gz
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method to CMap LINCS data and used only signatures from each of cell-
line to get tissue-specific correlation coefficients. For example, when
using input expression data from GSE51068, we used signatures that
are only from the OCI-LY3 cell-line. We obtained 277 signatures for
the OCI-LY3 cell-line, 4,259 signatures for the HepG2 cell-line, and 46
signatures for the SW480 cell-line, and each cell-line is matched to its
corresponding input expression data. Each TF and gene in a relation
is represented as a vector of gene expression values with a size of
the number of signatures, and we calculated the Pearson correlation
coefficients between the two vectors.

2.3.3. Scoring of target proteins
To score target proteins, we considered every protein in the PPI

network as candidate targets of a drug. Each score of a candidate target
protein is determined based on the previously calculated scores of TFs
as well as its distance to the candidate protein in the PPI network (Fig. 2
(B)). For example, if a candidate target protein has highly scored TFs as
its neighbor, the target protein also gives a higher score. We used the
shortest path length in the PPI network as the distance between each
protein and TF [31]. We designed a candidate target protein score like
below.

𝑆(𝑃𝑖) =
𝑑
∑

𝑟=1

𝑛𝑇𝐹 ,𝑟
∑

𝑗=1

𝑆(𝑇𝐹𝑟,𝑗 )
𝑟

(2)

In the Eq. (2), 𝑇𝐹𝑟,𝑗 means transcription factor having 𝑟 shortest
path length from a protein 𝑃𝑖 and 𝑆(𝑇𝐹𝑗 ) means 𝑇𝐹𝑗 ’s score calculated
in Eq. (1). 𝑟 means the shortest path length from protein 𝑃𝑖 and 𝑇𝐹𝑗 in
the network and 𝑛𝑇𝐹 ,𝑟 means the number of transcription factors with
𝑟 distance from a protein 𝑃𝑖. If we do not set the maximum distance,
very entity in the network can be reached. Therefore, we limited the
aximum length from a protein to TFs as 3 for the calculation because

t is enough to reach almost every TF. (See Supplementary Figure 2,
.)

.4. Performance evaluation

We tested our method’s performance in predicting already known
rug targets with other methods. We used the same procedure de-
cribed in ProTINA which compared high-scored proteins with drugs’
lready known targets by measuring the area under the receiver oper-
ting characteristic curve (AUROC) of each drug with other methods.
or each method and drug treatment, we obtained a score of every
rotein. Then, we generated a ranked list in descending order of the
rotein scores from our method, descending order of the target protein
cores from ProTINA, ascending order of the 𝑝-values from DeMAND,
nd descending order of 𝑙𝑜𝑔2 fold-change gene expression value from
ifferential expression analysis (DE). We used a binary vector for the
abel vector with 1 if the corresponding protein is the known target
r 0 for each drug. Using each of the ranked list and the label vector,
e calculated AUROC value for each drug. The higher the score of the
lready known target protein is, the higher the AUROC value of a given
rug is. There exist replicates in each input drug perturbation profile,
o we averaged AUROC values from the replicates.

We used three different drug perturbation datasets which contain
ifferent types of drugs to evaluate the overall performance of each
ethod. The AUROC values are made as many as the number of drugs

n each dataset. Then we plotted box plots to show distributions of AU-
OC values from every drug for each dataset. For the implementation
f DeMAND and ProTINA, we used R source code from the original
ublication. In the case of DE analysis, we used the 𝑙𝑜𝑔2 fold-changes

of genes. We used the same tissue-specific multilayer networks as those
in our method. We used the DrugBank[32] dataset for known targets
of drugs. Only drugs which are used in our analysis were selected. In
the case of the GSE40017 dataset, we were able to find targets from
the literature [33–36]. The drugs and their targets used in our study
4

are summarized in Supplementary Table 1.
For testing our scoring function in different conditions, we also
compared our method with scoring methods using different approaches
in calculating correlation coefficients and different neighboring dis-
tances in predicting known drug targets. We adopted random values
and multivariate linear regression (MLR) for correlation coefficients
between TFs and genes. The random coefficient values were each
sampled 30 times from the distribution of each corresponding dataset,
and we calculated AUROC of each drug using coefficients from the
result of each random sample. Then, we averaged AUROC values of
the 30 results for comparison. In the case of MLR, coefficients 𝛽𝑖𝑗 from
(Eq. (3)) are used. For expression value of 𝑦𝑖 of gene i, 𝑥𝑖𝑗 is expression
value of TF j which regulates gene i. We also tested our scoring function
by changing the maximum neighboring distances between proteins and
TFs

𝑦𝑖 = 𝛽𝑖0 + 𝛽𝑖1𝑥𝑖1 + 𝛽𝑖2𝑥𝑖2 +⋯ + 𝛽𝑖𝑗𝑥𝑖𝑗 + 𝜖 (3)

2.5. Data processing for case study

We processed every necessary data in the same pipeline that we
mentioned above. Input expression data was obtained from GEO with
the accession number GSE182297. The GSE182297 dataset contains
gene-expression data collected from brain tissues of both healthy in-
dividuals and patients with coronavirus. We acquired tissue-specific
TF-gene relations from the study [27] labeled as brain basal ganglia,
brain cerebellum, and brain other. We obtained 66,035 interactions
between 641 TFs and 9,542 genes. For TF-gene coefficients, we only
used signatures from LN299 cell-line in CMap, and 4 signatures were
selected. Following the same steps of the scoring function, every protein
was calculated and measured AUROC value with a ranked list in
descending order of the scores.

3. Results

3.1. Performance in predicting drug targets

We tested our method in predicting drug targets in three different
sets of expression data: data from NCI-DREAM drug synergy study with
anticancer drug agents in OCI-LY3 cell-line, data from the genotoxicity
study in the HepG2 cell line, and data from the GPCR targeting study
in the SW480 cell line. As mentioned in the method section, we
measured the AUROC score for each drug using a ranked list of protein
scores. Fig. 3 shows the distribution of the AUROC score of every
drug used in each dataset. DE analysis shows average AUROC scores
of 0.306, 0.440, and 0.501 in GSE51068, GSE28878, and GSE40017,
respectively. DeMAND shows average AUROC scores of 0.520, 0.566,
and 0.349. ProTINA shows average AUROC scores of 0.599, 0.495, and
0.324. Our method shows average AUROC scores of 0.809, 0.636, and
0.693. DE analysis shows the poorest AUROC values in the datasets
of GSE51068 and GSE28878. The other previous methods show better
results than DE analysis in the above dataset but also show worse
results in the dataset of GSE40017. However, our method shows the
highest performance regardless of the datasets. All AUROC scores from
different datasets are summarized in Supplementary Table 2.

3.2. Performance in different scoring conditions

To evaluate our scoring function, we tested the scoring function in
different conditions. We compared two other approaches in calculating
coefficients to use in our scoring of TFs and genes: coefficients from
random values following the same distribution of values from our
method and coefficients from MLR.

Fig. 4(A) shows the results of using other measurements to get coef-
ficients in the scoring of TFs. The average AUROC values using random
coefficients are 0.427, 0.575, and 0.480 in GSE51068, GSE28878, and

GSE40017, respectively. In the case of using MLR, the values are 0.772,
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Fig. 3. Performance comparison with other methods in predicting drug targets. AUROC value of each drug is calculated in the three different datasets and other previous
methods. The distribution of all AUROC values from each method is plotted as the format of the box-plot.
Fig. 4. AUROC values from different scoring conditions in our method. (A) shows the variation of performance depending on the way of getting correlation coefficients
between TFs and genes when scoring of TFs. (B) shows the variation of performance depending on the neighboring distance between target proteins and TFs when scoring target
proteins. Our method used a distance as 3.
0.581, and 0.594 for each dataset. For machine learning-based methods
such as MLR to work well, the quantity and quality of the dataset are
very important. By using CMap data, a sufficient number of expression
data which is more than the number of variables in the equations
consisting of the relationship between TFs and genes, was gathered.
However, the quality of the gene expression profiles from CMap was
relatively low. (See Supplementary Figure 4, 5.) Therefore, the perfor-
mance of a relatively simple method such as using Pearson correlation
between one-to-one (TF and gene) showed better performance than
models using various input variables such as MLR. Fig. 4(B) shows the
results of using different neighboring distances between proteins and
TFs. When we used just TFs in the first neighbors of each protein, we
were able to get average AUROC values of 0.634, 0.461, and 0.245 in
5

each dataset. The value increases to 0.759, 0.619, and 0.660 in each
dataset when using TFs within the second neighbors, but still lower
than the original method. All AUROC scores from different datasets and
methods are summarized in Supplementary Table 3.

3.3. High-scored proteins with known mechanism of action of drugs

For further analysis, we ranked the scores of mechanism-related
proteins to demonstrate our method. Some anticancer drugs in the
dataset of the NCI-DREAM challenge (GSE51068) are known to relate
to canonical p53 DNA damage pathway and eventually disrupt mito-
sis. For example, camptothecin (targets TOP1), doxorubicin (targets
TOP2A), and etoposide (targets TOP2A) have DNA topoisomerases as
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Fig. 5. High-scored proteins are associated with already known mechanism-related proteins. (A) The distribution of ranks of already reported proteins that are related
to the mechanism of action of anticancer drugs in the dataset of NCI-DREAM challenge. (B) 𝑃 -values of rapamycin-related KEGG pathways in each method. (C) 𝑃 -values of
azathioprine-related KEGG pathways in each method. (D) 𝑃 -values of SDF-1 related KEGG pathways in each method.
their target proteins, and these proteins activate p53 protein [37–39].
Other drugs such as rapamycin [40], vincristine [41], trichostatin a
[42], and methotrexate [43] are also known to regulate p53 protein.
Monastrol (targets KIF11) was also reported that there is a correlation
with p53 protein. Furthermore, it is also known that the p53 protein
interacts with other proteins such as CDKN1A [44], GADD45A [45].
And these proteins interact with other proteins such as AURKA [46],
PCNA [47], PLK1 [48], and CCNB1 [49] which are also in DNA damage
response pathway [16]. To demonstrate the results are related to the
already known mechanism of action (MoA), We measured the ranks of
the seven proteins (TP53, CDKN1A, GADD45A, AURKA, PCNA, PLK1
and CCNB1) in the scores of drug target prediction for each drug.
Since replicates of a drug’s expression profiles, an average value of
rank in every profile was used. The distributions of the ranks of the
mechanism-related proteins are illustrated in Fig. 5(A). Some of the
proteins ranked high even in other methods, but we confirmed that
our method ranked the mechanism-related proteins higher (median
rank: 906) than previous methods (DE median rank: 11,658, DeMAND
median rank: 2,894, ProTINA median rank: 8,196). All mechanism-
related proteins ranked within 3,000 in our method while there are
proteins ranked more than 15,000 in other previous works.

We also tested the high-scored proteins by comparing the results of
the gene set enrichment test (GSEA) of drug-related KEGG pathways.
We selected a drug (rapamycin, azathioprine, and SDF-1) for each
dataset and gathered related pathways of each drug from KEGG. High-
scored proteins in the top 5 percent in each dataset and method were
selected for the gene set enrichment test, and the 𝑝-values of corre-
sponding drug-related KEGG pathways are illustrated in Fig. 5(B–D).
Previous methods show higher 𝑝-values and even fail to detect drug-
related KEGG pathways. However, our method detects all the related
pathways with lower 𝑝-values. Our method shows the lowest 𝑝-values
for all related KEGG pathways in the case of rapamycin (Fig. 5-B).
6

DeMAND shows slightly better results of 𝑝-values in olfactory transduc-
tion and hematopoietic cell lineage in azathioprine (Fig. 5-C) but does
not capture graft-versus-host disease and allograft rejection. However, our
method can find all azathioprine-related KEGG pathways with reliable
𝑝-values. Our method also captures all related pathways of SDF-1
(Fig. 5-D) with lower 𝑝-values than previous methods.

3.4. Suggestion of mechanism of action of drugs

We identified that highly scored proteins are associated with already-
known mechanisms. In this analysis, we can suggest potential molec-
ular MoA of drugs from drug targets to genes through a multilayer
molecular network by using the top results of our method. This analysis
is possible only in our method because of the use of a multilayer
molecular network. We selected high-scored proteins, TFs and relations
between them to suggest a MoA of a given drug from targets to
expressed genes. We chose one drug for each dataset and filtered
proteins and TFs ranked in the top 1 percent, respectively. Singleton
proteins that are not connected to other proteins in the networks were
omitted from the analysis. We also selected genes connected to TFs
with high scores. There exist so many numbers of connected genes, so
genes were also filtered by their 𝑙𝑜𝑔2 fold-change values. Then we found
literature evidence supported by direct experimental results between
drug and represented proteins. Fig. 6 shows the suggested molecu-
lar mechanisms. In the case of rapamycin, a molecular mechanism
through the proteins such as PPARG, PRKCA, and PML [50–52] and
transcription factors such as EGR1, TFAP2A, SP1 and FOS [53–56]
are represented. In the case of azathioprine, proteins such as MAPK8,
ACKT1 and EGLN3 [57–59] and transcription factors such as SPI1, JUN
and NFKB1 [60–62] are represented. In the case of SDF-1, proteins
such as GNA13, GNB2, GNG12, GNAI2, PTPN6 and PTPN11 [63–67]
are represented. And transcription factors such as AHR, MYC, SMAD3
and E2F1 [68–71] are represented.
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Fig. 6. Suggested molecular mechanism of actions of drugs. (A) is for the case of
rapamycin from the dataset of NCI DREAM challenge, (B) is for the case of azathioprine
from the dataset of genotoxicity study, and (C) is for the case of SDF-1 from the
dataset of GPCR targeting study. Circle node means protein(including drug target and
transcription factor), and rectangle node means gene with high 𝑙𝑜𝑔2 fold-change. In
circle nodes, protein targets are colored in navy, transcription factors are colored in
green, and the others are in gray. In square nodes, highly up-regulated nodes are
colored in red and highly down-regulated nodes are colored in blue. Colored lines
between transcription factors and genes indicate the positive or negative value of the
correlation coefficient between transcription factors and genes. The red means positive
correlation and the blue means negative correlation.

3.5. Application to prediction of coronavirus targets

We applied our method to coronavirus (SARS-CoV-2) expression
data obtained from the GSE182297 dataset to show an advantage in
the case of predicting targets without solid structure information. It
is hard to specify the exact structure of the virus because a virus is
not a static chemical, and apply the previous work’s method because
it requires time-series data. We pre-processed data in the same way
described in the Method section. We used thresholds from the top 10
to 300 in the protein score from the silver standard dataset [72] as
it suggested 332 targets for the coronavirus. Then we calculated the
AUROC value for each threshold count. The AUROC values depending
on the threshold count are listed in Table 1. Although there was a slight
difference depending on the threshold count, we could check that the
performance was almost over 0.8 while differential expression analysis
was almost under 0.5.

We could also find the related KEGG pathways. We performed a
gene set enrichment test of high-scored proteins from our method and
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differential expression analysis. We used three hundred proteins in
the score for this analysis to match the number of the other work’s
suggestion. Top-5 KEGG pathway results from each method are listed in
Table 2. In differential expression analysis, the most enriched pathway
is viral protein interaction with cytokine and cytokine receptor, but the
𝑝-value was not significant because only proteins such as CCL3, CCR5,
and IL2 were included in the pathway. In our method, coronavirus
disease ranked in top-3 and the most enriched pathway, ribosome, was
also reported that the virus binds to the human 40S subunit and the
non-translating 80S ribosome [73].

4. Discussion

We developed a method that can be applied to various datasets,
effectively predict drug targets, and suggest the mechanism of actions
of drugs. There have been many methods using structural information
of chemicals and proteins. However, lack of data applicability and
imbalance exist and even AlphaFold2 [74] predict structures well only
for proteins with slight structural variation [75] but not for proteins
with complex structures such as G-protein coupled receptor (GPCR)
[76]. Considering that about one-third of FDA-approved drugs target
GPCR [77,78], its use can be limited. Our method does not require
structural information of drugs and proteins and can be used as long as
gene expression is given. By using large-scale public databases and data
from previous studies [27], we were able to construct tissue-specific
networks. Using large-scale perturbation data, we also obtained corre-
lation coefficients between TFs and genes. From the scoring function
built from the above data, we were able to capture the more reliable
molecular phenomenon of drug reaction in the body and have shown
through performance comparisons in predicting already known drug
targets in three different datasets. We also showed the capability of our
method in suggesting drug’s mechanism of action.

There have been several previous methods using gene transcrip-
tional profiles and networks, but there were limitations such that they
were not able to properly capture the phenomenon of drug response
in network construction. Considering that the structure of GPCRs is
unstable, a transcriptome-based approach seems appropriate to solve
the problem. However, previous methods showed relatively low per-
formance in the GPCR target study because GPCR regulates cellular
processes at the top of the different signaling pathways and is far from
the TFs in the PPI network. In the previous works, they tried to combine
GRN and PPI but they simply stopped at building partners between
proteins and genes only in the first neighbor. It is difficult to explain the
process of a GPCR target that acts across multiple and serial proteins.
In contrast, our network first separates TFs and proteins in the different
layers and preserves the interactions between proteins to reflect more
reliable biological phenomena. According to the network structure, our
scoring method is also designed to consider the two features described
above. First, our scoring method captures TFs which can explain drug-
perturbed gene expression changes. Then, our scoring method finds
which proteins can cover as many as and as close as the TFs in the PPI
network. Our scoring method shows better performance in predicting
known drug targets regardless of drug types (Fig. 3). Unlike previous
studies in which the performance of GPCRs decreased, our method
showed preserved performance. All factors in our scoring function
are based on previous works, but we also tested the scoring function
in different conditions (Fig. 4). For comparison, we first conducted
random permutation and MLR to get correlation coefficients between
proteins and genes. The regression models were generated as the same
number of genes in the network, so they spent more computational
resources and were more dependent on background data than our
method (Supplementary Figure 4, 5). Scoring function using different
neighboring distances also supports the importance of using deeper
interactions between proteins.

We showed that our method not only outperformed in predicting
drug targets in three independent GEO datasets but also suggested
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Table 1
AUROC scores using the silver standard dataset of SARS-CoV-2 by threshold count in each method.

Threshold count
10 20 30 40 50 60 70 80 90 100 200 300

Our method 0.855 0.910 0.934 0.856 0.863 0.856 0.860 0.828 0.816 0.825 0.810 0.761
DE 0.538 0.681 0.524 0.347 0.284 0.309 0.314 0.333 0.327 0.317 0.344 0.385
Table 2
Top-5 results from gene set enrichment test for KEGG pathways in each method.

Order KEGG Pathway 𝑃 -value Adjusted 𝑃 -value

1 Ribosome 4.42e−08 1.79e−09
2 Thyroid hormone signaling pathway 4.42e−08 4.25e−09

Our Method 3 Coronavirus disease 6.41e−06 2.54e−08
4 Pathways in cancer 2.79e−05 1.06e−05
5 Preteoglycans in cancer 1.24e−04 1.37e−05

Order KEGG Pathway 𝑃 -value Adjusted 𝑃 -value

1 Viral protein interaction with cytokine and cytokine receptor 1.59e−1 9.95e−1
2 Galactose metabolism 3.49e−1 9.95e−1

DE 3 Starch and sucrose metabolism 3.93e−1 9.95e−1
4 Allograft rejection 4.09e−1 9.95e−1
5 Chagas disease 4.10e−1 9.95e−1
the molecular mechanisms of action of drugs supported by literature
evidence beyond simply providing insight. Because of the lack of inter-
actions between proteins themselves, previous works have limitations
in elucidating the mechanism of actions of drugs. However, our method
can express interactions between proteins and is able to explain already
known drug mechanisms as shown in Fig. 5. Our method has richer
information of molecular interactions, so we can suggest the potential
molecular mechanism of drugs as shown in Fig. 6.

Application to SARS-CoV-2 especially showed the advantages of our
applicability even without structural information or time-series data.
As far as we know, there is no in-silico based screening method for
predicting targets of SARS-CoV-2 using the gene transcriptional profiles
and network yet, so we have not further validated it. However, we
confirmed the possibility of our method which showed quite a good
performance in the AUROC score (Table 1) and finding related KEGG
pathways (Table 2).

Like any other methods using any kind of network, the biological
interactions including tissue-specific transcription and gene interac-
tions are not complete. The database CMap gives a chance by offering
numerous drug perturbation data, but it is still far from perfect. Our
method also has the disadvantage of being dependent on these im-
perfect data. And the molecular interactions in our body have more
dynamics and complexity between them than we tried to represent.
Scoring function with a relatively simple format is also one of the
limitations of our method. Current data quality seems hard to fol-
low more elaborate methods. However, if more background data is
supported, more sophisticated approaches such as using probabilistic
models for getting explainable TFs and using the high-quality context-
free network for network construction can elaborate our method to find
targets of drugs. Nevertheless, we tried to derive a model to capture the
biological phenomenon well within the solvable range and expect that
the performance can be further improved as we accumulate knowledge
about biological interactions. We expect that our method could help
in the processes in drug screening and discovery by predicting targets
with insights into the molecular mechanism.
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