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ABSTRACT

Motivation: Complex physiological relationships exist among human

diseases. Thus, the identification of disease associations could

provide new methods of disease care and diagnosis. To this end,

numerous studies have investigated disease associations. However,

combinatorial effect of physiological factors, which is the main char-

acteristic of biological systems, has not been considered in most

previous studies.

Results: In this study, we inferred disease associations with a novel

approach that considered disease-related clinical factors in combina-

torial ways by using the National Health and Nutrition Examination

Survey data, and the results have been shown as disease networks.

Here, the FP-growth algorithm, an association rule mining algorithm,

was used to generate a clinical attribute combination profile of each

disease. In addition, we characterized the 22 clinical risk attribute

combinations frequently discovered from the 26 diseases in this

study. Furthermore, we validated that the results of this study have

great potential for drug repositioning and outperform other existing

disease networks in this regard. Finally, we suggest a few disease

pairs as new candidates for drug repositioning and provide the evi-

dence of their associations from the literature.
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1 INTRODUCTION

Complex physiological relationships exist among human dis-

eases. Thus, the identification of disease similarity has been
used to study etiology and pathogenesis of similar diseases

(Kalaria, 2002), as well as have provided novel ways for disease

diagnosis, drug repositioning (Barabási et al., 2011; Goh et al.,

2007; Suthram et al., 2010). Therefore, many studies to elucidate
disease associations have emerged, and the results of which have

been presented as disease networks (DNs). Previous studies of

DNs can be classified into two categories based on the used data,

molecular data and electronic health record (EHR) data.
From a molecular perspective, Goh et al. constructed DNs

that were linked if they shared one or more disease genes (Goh

et al., 2007). Following Goh’s study, functional module–based

studies by using molecular data have also appeared to clarify

disease associations. Lee et al. created DNs that were linked if

the enzymes related to diseases shared metabolic reactions (Lee

et al., 2008). In addition, Suthram et al. (2010) also built DNs by
an integrated analysis of disease-related mRNA expression data

and the human protein interaction networks. Here, two diseases
were linked if they had similar profiles of 4620 functional mod-

ules that were described by differently expressed genes of the

disease. Park et al. (2011), more recently, published the article
of disease associations by considering both disease-related pro-

teins and their localization in a cell.
The other approach for constructing DNs based on EHR data

have also emerged. EHR data have usually been used for obtain-
ing comorbidity, which implies the presence of one or more dis-

eases in addition to a primary disease that the patient has. For

example, Hidalgo et al. (2009) introduced DNs obtained from
the disease history of more than 30 million patients. Roque et al.

(2011) also presented networks from phenotype information
including both structured and unstructured electronic patient re-

cords, such as free-text diagnosis reports. Furthermore, Holmes

et al. (2011) introduced ADAMS for discovering disease associ-
ations using multiple sources, such as PubMed articles, discharge

summaries and so on.
However, previous studies overlooked the combinatorial

effect, which is one of main biological characteristics.
Combinatorial effects exist in biological system, and biological

factors influence a disease in combinatorial rather than individ-

ual ways.
As evidence, studies for combinatorial effects in biology and

physiology have recently appeared. In molecular biology field,

Knijnenburg et al. (2009) presented that most Saccharomyces

cerevisiae genes were shown to be influenced by combinatorial
effects of cultivation parameters. These combinatorial effects led

to higher explained variance of the gene expression patterns. Liu

et al. (2011) showed that the combination of rapamycin and
lapatinib significantly decreased growth of triple-negative

breast cancers. We also explored some clinical studies devoted
to identifying the combinatorial effects of diseases (Bruzzi et al.,

1985; Emmons et al., 1994; Gorell et al., 2004; Stamler et al.,

1993). Furthermore, the combinatorial approach has been
applied in adverse drug event field. Harpaz et al. (2010) extracted

multi-item adverse drug events from the Food and Drug
Administration’s adverse effect reporting system by using

association rule mining. All of these studies have shown that

combinatorial effects exist in physiological system and are
worthy to be regarded to elucidate diseases and disease

associations.*To whom correspondence should be addressed.
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The fundamental assumption of previous studies, on the other

hand, is that higher association exists between diseases as more

disease-related factors are shared individually, not combinator-

ially. Especially in Goh’s study (Goh et al., 2007), individual

sharing genes is a measure of similarity. However, even though

two diseases share disease genes, the etiological factors of each

disease could be totally different due to the combinatorial effects

on biological factors.

For example, there are two diseases sharing disease genes, gene

A and B. One disease occurs when both gene A and gene B are

not working properly; however, the other disease presents when

gene A or gene B is not functioning. Then, it is hard to conclude

that these two diseases have a perfect association (more explan-

ation in Fig. 1). Thus, when we try to get more precise and

accurate association between diseases from a biology perspective,

combinatorial effect profiles of them should be analyzed. This

explanation can be applied to other molecule-based studies and

EHR-based studies in the same manner.

From this background, we present a novel approach that con-

siders disease-related physiological factors in combinatorial ways

for inferring disease associations. Here, we decided to use clinical

data, rather than molecular data or comorbidity data. Molecular

information is incomplete and should be further explored, even

though much knowledge has been discovered by development of

recent technology and analysis. On the other hand, clinical data

provide practical explanations of disease associations and is

becoming available to researchers in massive amounts (Holmes

et al., 2011).

The National Health and Nutrition Examination Survey

(NHANES; http://www.cdc.gov/nchs/nhanes.htm), a major clin-

ical survey of the National Center for Health Statistics, was used

as primary data for this study. Molecule and comorbidity data

were incorporated to evaluate the results of this study in evalu-

ation part as well.
In this article, we constructed the DNs from the information

of disease-related clinical attribute combinations (Fig. 2). In add-

ition, we generated the 22 clinical attribute combinations

frequently discovered from the 26 diseases concerned in this

study, named as ‘Clinical Risk Attribute Combinations

(CRACOMs)’. In the evaluation section, we showed that the

results of this study have great potential to be used for drug

repositioning and outperform other existing DNs in this

regard. Furthermore, we investigated a few disease pairs as can-

didate disease for drug repositioning and present some valuable

evidence of the associations.

2 METHODS

2.1 Data introduction

NHANES is a program of studies designed to assess the health and nu-

tritional status of adults and children in the USA. NHANES is a major

survey of National Center for Health Statistics, which is a part of the

Centers for Disease Control and Prevention. Owing to some characteris-

tics of this survey that are various data, including both interviews and

physical examinations data, and own sequence number to every sample

person, many researchers have used it for epidemiological studies and

health sciences research (Healy et al., 2011; Looker et al., 2010).

Fig. 1. Possible problems when combinatorial effects are overlooked for

inferring disease association. (a) Diagram indicating disease genes of two

diseases (D1, D2). (b) Assumed disease cause profiles in previous studies

and real biological system. In Goh’s study (Goh et al., 2007), D1 and D2

are considered to be somewhat associated based on the assumption that

disease genes affect each disease individually (upper half). However, each

disease cause profile could be different in real biological system because

of combinatorial effects, and two diseases might be rarely associated

(lower half)

Fig. 2. Overall procedures of this study. In the data preparation part, we

organized combined datasets, each of which is composed of both the case

and control data of each disease, from integrated NHANES data. In the

method part, we obtained disease-specific CLACOPs, each of which

turned out to affect each disease, by applying an association rule

mining algorithm to the combined datasets. From these CLACOPs, we

generated CLACOVs and calculated similarities between CLACOV pairs

for the purpose of deducing similarities between disease pairs. We con-

sidered 26 diseases in this study
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2.2 Data preparation

For the purpose of this research, we obtained large-scale clinical infor-

mation by integrating from 1999 to 2010 Questionnaire and Laboratory

data fromNHANES, resulting in the 62160 instances and 3812 attributes

(Fig. 3a). From the integrated NHANES dataset, we generated the case

dataset of each disease, which was composed of instances that had the

disease in the past. Among many diseases included in NHANES data, we

selected 26 diseases, each of which has more than 450 instances in a case

dataset. Then, we applied a filtering algorithm to each case dataset so as

to filter out instances and attributes having more missing values than the

predefined threshold. After filtering, each case dataset has its own in-

stances and attributes (Fig. 3b). To analyze all of 26 diseases impartially,

we decided to use the only 73 attributes shared among 26 disease case

dataset (Supplementary Table S1). Next, we appended a control dataset,

which contains instances that are not related to the disease, to the cor-

responding case dataset to construct a combined dataset (Fig. 3c).

After constructing combined dataset, we transformed every value in

the dataset into a binary value based on reference range of each attribute

(Supplementary Table S1) (Iverson et al., 2007). In this transformation,

we mapped every value to either 1 (if a value does NOT lie in reference

range) or 0 (if a value lies in reference range). As the last step, Random

imputation overall method was applied to all combined dataset to impute

missing values (Kalton and Kasprzyk, 1982). These datasets were used as

an input of an association rule mining algorithm

2.3 Clinical attribute combination profile

As we mentioned in the introduction part, a disease occurs by plenty of

causes, and these causes influence a disease in combinatorial ways rather

than in independent ways. Therefore, analysis of clinical factors in com-

binatorial ways is necessary to research disease associations. To this end,

for each of the 26 diseases, we obtained Clinical Attribute Combination

Profile (CLACOP) composed of a set of disease-specific clinical attributes

that are considered to influence the disease in combinatorial ways.

To generate a CLACOP of each disease, the FP-growth algorithm, one

of the efficient association rule mining algorithms, was applied to each

combined dataset. The FP-growth algorithm needs much lower comput-

ing power than the Apriori algorithm, as it is applied to binary dataset,

which is a characteristic of the preprocessed combined dataset.

When we use FP-growth algorithm, three thresholds such as support,

confidence and max number of attributes should be determined.

However, it was ambiguous and not easy to set above three thresholds

because the final results, both disease similarities (correlations) and asso-

ciations, could be different according to them. For setting the appropriate

thresholds, we experimented on the whole procedures (refer to section 2.3,

2.4, 3.1) with 17 sets of different thresholds and generated disease correl-

ation ranks for each threshold (Supplementary Table S2). Then, we mea-

sured their Spearman’s rank correlation coefficients in pair-wise manner,

resulting in subtle difference among them (Supplementary Table S3). In

the end, we selected the thresholds (support: 0.05, confidence: 0.7, max

number of attributes: 5) to be used in the main experiment, having the

highest Spearman’s rank correlation coefficient compared with the aver-

age disease correlation rank (Supplementary Table S4).

Therefore, WEKA program (Hall et al., 2009) was used for running

the FP-growth algorithm with three thresholds (support: 0.05, confidence:

0.7, max number of attributes: 5) to each combined dataset (Fig. 4a).

Among the rules that the FP-growth algorithm have generated, we se-

lected rules having the corresponding disease attribute only in consequent

part. Here, the antecedent of the selected rules was postulated as a clinical

attribute combination that affects the corresponding disease in combina-

torial ways (Fig. 4b). Then consequently, we generated a set of clinical

attribute combinations (CLACOP) for the disease. By performing

the same procedure to 26 diseases, finally, we obtained 26 CLACOPs

(Fig. 4a).

2.4 Disease similarity calculation

For identifying disease similarity in quantitative, we transformed 26

CLACOPs to a Clinical Attribute Combination Vectors (CLACOVs)

of the disease. Then, we applied the cosine similarity method to a pair

Fig. 3. Data preparation by preprocessing the integrated NHANES data

(the color figure in Supplementary Fig. S10). (a) Integrated from 1999 to

2010 NHANES data. Large-scale clinical information was obtained by

integrating from 1999 to 2010 Questionnaire and Laboratory data from

NHANES. (b) Case dataset of each disease. After applying a filtering

algorithm, each case dataset has its own instances (the instance number of

disease k: Ink) and attributes (Ak). (c) Combined dataset of each disease.

The shared attributes among 26 filtered case dataset (A1\ . . .\A26) were

selected and used. The number of shared attributes is 73 (An1 . . . 26)

(Supplementary Table S1). Finally, we appended control dataset to

case dataset to construct combined dataset

Fig. 4. (a) Procedures for generating CLACOP. (b) The FP-growth al-

gorithm results of diabetes dataset (imaginary example). Among the rules

that the FP-growth algorithm have generated, we only included the rules

that had the only corresponding disease attribute in consequent part to

the CLACOP of a disease

2019

Inferring disease association in a combinatorial manner

 at K
orea A

dvanced institute of Science &
 T

echnology on M
arch 21, 2014

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt327/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt327/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt327/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt327/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt327/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt327/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt327/-/DC1
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


of CLACOVs for calculating similarity of two diseases. Here, we decided

to use the cosine similarity method because the method has been numer-

ously used in text mining area when determining how two records are

similar (Bilenko and Mooney, 2003; Larsen and Aone, 1999), which is

analogous to this procedure. Cosine similarity is given as

Similarity ¼

Pn
i¼1

Ai � BiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

A2
i

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

B2
i

s ð1Þ

When we generated a CLACOV, we assigned the confidence of the

rule to the corresponding clinical attribute combination (Fig. 5a). As a

result, we generated 26 CLACOVs by using 26 CLACOPs and their

confidence scores. Then, the cosine similarity method was applied to a

pair of CLACOVs, and they were regarded as similarities between two

diseases (Fig. 5b).

3 RESULTS

3.1 The disease correlation matrix

For calculating more reliable and unbiased disease similarities,

overall procedures were repeated five times with different control
dataset, which were selected randomly from each control data

pool (Supplementary Figure S1). In the end, the CLACOV-shar-
ing disease correlation (similarity) matrix was constructed with

the average similarities. We visualized it in Figure 6a, and the
correlations were described in Supplementary Table S5.

To analyze and compare the disease correlation matrix (DCM)
in detail, we also constructed three other DCMs based on differ-

ent entity such as gene, single-nucleotide polymorphism (SNP)
and patient data. We applied the individual approach (not the

combinatorial approach), which is the conventional approach for
DNs, for generating those three DCM. To this end, we calcu-

lated the similarity between a pair of diseases, indicating how

many entities (gene, SNP or patient) are shared. For example,

for generating gene-sharing DCM, we generated a list of genes

known to be associated with each disease, and the disease simi-

larity (correlation) was calculated based on how many genes are

shared between a pair of diseases. The similarity is defined as

Similarity ¼
N gk \ gq
� �

ffiffiffiffiffiffiffiffiffiffiffiffi
N gkð Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N gq
� �q ð2Þ

where N(gk) is the number of genes used to disease k, and N(gk \

gq) is the number of genes used to both disease k and disease q.

SNP-sharing, patient-sharing DCM were also generated with the

same way used for gene-sharing DCM (Supplementary Fig. S2).

Their correlations were specified in Supplementary Table S6, and

Fig. 5. (a) Procedures for generating CLACOV. CLACOV was generated

by using both CLACOP and their scores that are obtained from confi-

dences of the rules. (b) Disease similarity calculation between two

CLACOVs. The union of two CLACOPs was created in every disease

pair similarity calculation so that the cosine similarity method was able to

be applied to a pair of CLACOVs, and those results were regarded as

similarities between two diseases. Here, we presented imaginary examples

for making it easy to understand

Fig. 6. (a) CLACOV-sharing DCM. Darkness of the blue color corres-

ponds to correlation. (b) The DNs of this study. We only figured correl-

ations that are more than 0.35. The width of edge is proportional to the

square of correlation, and the node size corresponds to the degree of the

node. The DNs consisting of significant associations compared with

random sets were constructed in Supplementary Figure S4. (The color

figure has been provided in Supplementary Fig. S11.)
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the used databases for each entity are specified in Supplementary

Figure S3.
When comparing the DCM of this study with the others, es-

pecially with gene-sharing DCM, we see many expected disease

correlations such as the similarities among heart attack, angina

and congestive heart failure. In addition, well-known correlation

between failing kidneys and heart diseases was also discovered.

We also see some unexpected correlations such as the gout and

heart disease correlation as well as the cataract and heart failure

correlation.

3.2 The disease networks

For assigning significance to the obtained disease similarities

(correlations), we generated a background distribution of disease

similarities by random chance for each pair of diseases. To this

end, for each disease, we prepared a randomized combined

dataset, in which we shuffled case and control instances ran-

domly. Then, we tried to generate CLACOP with the same

threshold used in this study (support: 0.05, confidence: 0.7,

max number of attributes: 5). However, few clinical attribute

combinations for each disease resulted that few disease pairs

have non-zero similarities. That is because thresholds, especially

confidence, were too strict to generate any clinical attribute com-

binations from randomly shuffled dataset. Therefore, we applied

lower confidence (0.55) for obtaining background distribution.

Because the confidence is directly used for calculating a disease

similarity, adjusting confidence than other thresholds could give

more reasonable results. Finally, we created background distri-

butions for each pair of diseases by repeating the whole process

100 times (Supplementary Table S7).

Next, we selected only those disease pairs having less P-value–

like significance score than 0.0001 (FDR-like score¼ 0.01%),

resulting in 260 significant disease associations (Supplementary

Table S7), and we constructed the final DNs by using those as-

sociations. (Here, the terms such as ‘P-value–like’ or ‘FDR-like’

have been used because different confidence thresholds were

applied to compute the foreground and background disease simi-

larities.) We, however, decided to visualize the networks in sup-

plementary material (Supplementary Fig. S4), as it shows a

complicated picture. Instead, the DNs consisting of edges that

have higher correlations than 0.35 were built and shown in

Figure 6b.

3.3 Clinical risk attribute combination

Furthermore, we analyzed the results to discover clinical attri-

bute combinations associated with various types of diseases. We

postulated that there exist the clinical attribute combinations that

are prevalent in various diseases because diseases are associated

with each other in some way. By investigating those combin-

ations, causes of comorbidity or pathogenic patterns of diseases

can be analyzed. Thus, we characterized CRACOMs that are

clinical attribute combinations appeared in 17 or more diseases

among the 26 diseases, resulting in 22 CRACOMs (Supplemen-

tary Table S8). The CRACOMs would be worth elucidating

further for disease etiology and comorbidity.

4 EVALUATION

4.1 Potential for drug repositioning

Knowledge of a disease similarity based on combinatorial clinical

factors could be applied to find new uses for existing drugs.

Similar diseases share similar symptoms or clinical factors and

could be potentially cured by similar drugs. To this end, we

checked the potential that this study is able to be used in drug

repositioning by comparing with drug-sharing DNs, which were

built based on drug-sharing DCM.
For constructing drug-sharing DCM, we used the same

method that was used to construct gene-sharing DCM (2). In

detail, we generated a list of drugs known to be associated with

each disease, and the disease similarity was calculated based on

how many drugs were shared between a pair of diseases. Finally,

we could obtain drug-sharing DCM, resulting in drug-sharing

DNs.

Drug-sharing DNs have been regarded as reference DNs in

this evaluation. We constructed two reference DNs according to

resources (Supplementary Fig. S5). The first reference was built

based on DrugBank, PharmGKB and TTD database, all of

which contains information of approved drugs. The second ref-

erence was built based on clinicaltrials.gov database, which con-

tains information of drugs that are not approved yet but in

the process of trials on patients (Supplementary Fig. S6 and

Table S9).
After constructing the reference DNs, we extracted 30 disease

pairs in CLACOV-sharing DNs that have higher similarities

than others (top 30 ranked disease pairs), and we compared

those pairs to top 30 ranked disease pairs of two reference

DNs. It resulted in that 18 disease pairs and 15 diseases pairs

shared, respectively, and for both, P50.0001 (Supplementary

Fig. S7). Thus, we concluded that the result of this study is

worthy to be used for drug repositioning. Additionally, we clo-

sely examined 18 disease pairs that shared with the first reference

networks (Supplementary Fig. S8). In results, some disease pairs

are biased toward several disease classes such as cardiovascular

disease and respiratory disease. The reason for the bias, which we

have concluded, is that NHANES data mainly contain the infor-

mation of the prevalent diseases such as diabetes, stroke and

heart attack. In addition, reducing diseases by the preprocessing,

which filtered out the diseases having more missing values than

the threshold, could be one of the causes. In the future work, we

are planning to construct DNs with increased disease coverage

by using more various data.

4.2 Outperformance in drug repositioning field

There exist many disease similarity studies based on other data,

such as gene, SNP and comorbidity, and they might provide

better information to drug repositioning research than this

study. Thus, we compared the performance of CLACOV-sharing

DNs with other DNs to see how better performance we could

offer.
To this end, we built three DNs based on gene-sharing DCM,

SNP-sharing DCM and patient-sharing DCM (comorbidity),

which were generated in section 3.1. For each DN (CLACOP-

sharing, gene-sharing, SNP-sharing and patient-sharing DNs),

we measured how many disease pairs share with reference DNs
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among top-k ranked disease pairs while k was increasing from 1

to 50 (Supplementary Fig. S9). This evaluation shows that this

study outperformed other approaches (Fig. 7). Therefore, we

believe that CLACOP-sharing DNs potentially give useful infor-

mation to drug repositioning field.
The combinatorial approach in this study could give one ex-

planation of this good performance. When a drug is taken to the

body, the drug gives rise to a few effects including an expected

effect because the biology system of the body is intricate. Then,

the combinatorial action of them (biological system basically

functions in a combinatorial manner as mentioned in introduc-

tion part) leads to a phenotypic effect such as cure of disease

(Fig. 8a). Thus, if two diseases share the combinatorial profile

that is highly correlated to the corresponding drug effects, the

two diseases have more possibility to be drug-repositioned than

other diseases (Fig. 8b).
In addition, utilization of clinical data itself could be an ad-

vantage in drug research field. Other conventional approaches

for drug repositioning, such as target-based approach (Keiser

et al., 2009) and effect-based approach (Sirota et al., 2011),

have the same limitation that is the translational problem,

which means that a drug does not work in clinical trials even

though it works well in an in vitro or a mouse experiment. This

study, however, can complement the translational problem be-

cause clinical data were directly used for calculating disease as-

sociations and inferring drug repositioning candidate diseases.

5 DISCUSSION

We further explored disease pairs that are able to be new candi-

dates for drug repositioning. As a result, we found that the gout

and heart diseases pairs were positioned at high ranks in this

study, but drugs hardly shared for the disease pairs yet

(Table 1). To verify the potential for new candidates of drug

repositioning, we investigated relationships between gout and

heart diseases from literature, and we could obtain some evi-

dence that they are closely associated. Choi and Curhan (2007)

and De Vera et al. (2010) claimed that men and women with gout

have an increased risk for heart diseases, such as myocardial

infarction and coronary heart disease. Moreover, Krishnan

et al. (2006) also revealed that gout is a risk factor of myocardial

infarction, using multivariable regression models. In Krishnan’s

article, they referred that further research will be needed for the
exact links between two diseases, and the combinatorial ap-

proach of this study could give some clues for it.

We also disclosed disease pairs of cataract and heart diseases

that has great potential for new drug repositioning candidates

(Table 1). To understand the results further, we surveyed articles

that support the observed disease association. Theodoropoulou

et al. (2011) reported that coronary heart disease is one of the

statistically significant risk factor of cataract. In addition,

Younan et al. (2003) provided some evidence supporting a rela-

tionship between cardiovascular diseases and incident cataract.

6 CONCLUSION

The combinatorial approach is highly necessary to explain dis-

ease associations because the real diseases occur in combinatorial

ways. In this study, we inferred disease associations with a novel

approach that considered disease-related physiological factors in

combinatorial ways by using NHANES data. This study will give

good explanations for understanding disease associations, and it

will also provide inspiration to combinatorial approach studies

not only in the disease related field but also in other fields having

combinatorial characteristic. Furthermore, we generated disease

specific CLACOPs as well as CRACOMs, which will give a few

clues for disease prevention and etiology. Those profiles will be

investigated in the future.

Fig. 7. The evaluation results (the color figure in Supplementary Fig.

S12). This results show that the networks of this study (CLACOP-sharing

DN) performed better than other networks at almost every top k, when

compared with both reference networks 1 (approved drug-sharing DN)

and reference networks 2 (trial drug-sharing DN)

Fig. 8. (a) The combinatorial effects of drug A to disease 1. This figure

describes the combinatorial effects of drug A resulting in cure of disease

1. (b) Drug repositioning of the drug A for disease 2. Even though dis-

eases 1 and 3 share more individual effects than diseases 1 and 2, the drug

A is repositioned to disease 2, as the combinatorial effects caused by the

drug A exists in both diseases 1 and 2, not disease 3. (The color figure has

been specified in Supplementary Fig. S13)
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We also validated the potential of this study to be used in the

drug repositioning field, and showed that this study outper-

formed other approaches in this regard. As a result, a few disease

pairs such as the gout and congestive heart failure, and the cata-

ract and coronary heart disease, were suggested as the candidate

diseases for drug repositioning.
We will investigate these drug repositioning candidate diseases

on hereafter studies. In addition, when molecular data and their

combinatorial analysis are incorporated, further improvements

could be achieved in elucidating disease associations because mo-

lecular data provide the information that physiological data

cannot cover. This further work also will be investigated in the

future.
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Table 1. New disease candidates for drug repositioning

Disease pairs Similarity

CLACOP-

sharing DN

Ref. 1 DN Ref. 2 DN

Cataract and CHD 0.564 0.0 0.0

Gout and CHF 0.481 0.0 0.003

Cataract and CHF 0.476 0.0 0.0

Gout and CHD 0.450 0.0 0.0

Note: Four disease pairs in this table have been revealed as candidates for drug

repositioning. Those pairs had relatively high similarities in this study but relatively

low similarities in the reference DN, indicating that they have not been used for

drug 55 repositioning yet in spite of the potential. CHF: congestive heart failure,

CHD: coronary heart disease.
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