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Abstract Large-scale sequencing of cancer genomes has

revealed many novel mutations and inter-tumoral hetero-

geneity. Therefore, prioritizing variants according to their

potential deleterious effects has become essential. We

constructed a disease gene network and proposed a

Bayesian ensemble approach that integrates diverse sour-

ces to predict the functional effects of missense variants.

We analyzed 23,336 missense disease mutations and

36,232 neutral polymorphisms of 12,039 human proteins.

The results showed successful improvement of prediction

accuracy in both sensitivity and specificity, and we dem-

onstrated the utility of the method by applying it to somatic

mutations obtained from colorectal and breast cancer cell

lines. The candidate genes with predicted deleterious

mutations as well as known cancer genes were significantly

enriched in many KEGG pathways related to carcinogen-

esis, supporting genetic homogeneity of cancer at the

pathway level. The breast cancer-specific network

increased the prediction accuracy for breast cancer muta-

tions. This study provides a ranked list of deleterious

mutations and candidate cancer genes and suggests that

mutations affecting cancer may occur in important path-

ways and should be interpreted on the phenotype-related

network or pathway. A disease gene network may be of

value in predicting functional effects of novel disease-

specific mutations.

Introduction

The recent advances in high-throughput DNA sequencing

technology have enabled whole genome or exome

sequencing for hundreds of patients. In addition, by major

initiatives, such as the Human Variome Project, the 1000

Genomes Project, and the International Cancer Genome

Consortium, a vast amount of variation data have been

generated. Thus, many novel mutations, which change an

amino acid of the corresponding protein and possibly affect

its phenotype, are expected to be found in patients with

various cancers or other genetic diseases. Several studies

have reported a number of sequence variations in human

cancers (Campbell et al. 2008; Greenman et al. 2007; Jones

et al. 2008, 2010; Sjoblom et al. 2006), in which mutational

patterns have differed greatly between patients with the

same disease. This heterogeneity implies that potentially

different driver mutations may be responsible for a tumor

cell growth advantage during carcinogenesis or tumor

progression from one patient to the next, which is likely to

present a challenge to personalized medicine (Swanton

et al. 2011). Accordingly, it has become essential to
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determine how to interpret such a large number of novel

sequence variants found in cancer patients. In particular, an

accurate and rapid distinction of neutral polymorphisms

and cancer-causing mutations is one of the most important

issues.

Many different algorithms have been developed to

provide in silico prediction for novel variants (Adzhubei

et al. 2010; Carter et al. 2009; Fischer et al. 2011;

Kaminker et al. 2007; Ng and Henikoff 2003, 2006; Sch-

warz et al. 2010; Shi and Moult 2011; Thomas et al. 2003;

Torkamani and Schork 2008). However, the prediction

performance of the methods still needs to be improved.

While most current methods utilize local information of a

mutation such as physicochemical properties, sequence

conservation, and structure homology for feature infor-

mation, underlying clinical phenotype information is yet to

be considered. For example, when predicting novel muta-

tions found in cancer patients, the current methods do not

take into account the clinical characteristic of cancer,

which may be informative for predicting the functional

consequences of the variants. Even though different

mutations may show a similar amount of change in the

corresponding protein, the functional effects of the muta-

tions can be diverse according to the relative importance of

the target gene in the context of clinical phenotype or

disease. A feasible approach to determining the importance

of a certain gene regarding a pathological condition could

be to utilize the protein’s interactions with known disease

genes. It was previously shown that mutations of interact-

ing proteins are likely to lead to similar disease phenotypes

(Gandhi et al. 2006). By merging a network of known

cancer genes with human protein–protein interactions and

calculating a level of closeness with the cancer genes, we

sought to measure the importance of a particular gene with

regard to a possible association with cancer. On the other

hand, diverse somatic mutation patterns were observed

across different human cancers (Kan et al. 2010), and in

order for genes to play a critical role in the development of

disease in a particular tissue, their protein product should

be expressed in that tissue (Morton 2004; Williamson et al.

2008). Therefore, we also constructed a specific cancer

sub-type gene network, which utilized gene expression

profiles, and evaluated the performance.

Since we showed in a previous study that a combination

approach can successfully increase prediction accuracy, we

predicted that merging the combination approach and

clinical background information for each mutation would

improve prediction performance (Won et al. 2008). In this

study, we propose a Bayesian ensemble approach that

integrates multiple predictors, protein interaction networks,

known cancer genes, and tissue expression profiles, to

predict the phenotypic effect of sequence variants of

human cancers and evaluate the prediction performance.

To investigate the assumption that utilizing more prior

knowledge may enhance the prediction power, we com-

pared the performance of the Bayesian ensemble model

with protein–protein interactions and known cancer genes

in OMIM (a general cancer network), and the one also

including available tissue expression profiles (a breast

cancer specific network). By applying the proposed method

to sequence variants identified from previous studies, we

examined potential candidate cancer genes and mutations

that might be associated with cancers in humans.

Materials and methods

Reference database

The human polymorphisms and disease mutations were

retrieved from the Swiss-Prot database. Classification of

polymorphisms and disease mutations was made according

to literature reports on probable disease-association. Swiss-

Prot 57.12 (http://www.uniprot.org/docs/humsavar.txt)

contained a total of 61,565 variants including 23,336 dis-

ease variants, 36,232 polymorphisms, and 1,997 unclassi-

fied variants of 12,039 human gene proteins or hypothetical

proteins. The proteins were classified in terms of molecular

function according to the PANTHER protein library

(Thomas et al. 2003). For redundant variants associated

with several diseases, only one variant was included in the

analysis. Of the disease variants, 4,711 variants were

known to be associated with human cancers.

Tools for predicting phenotypic effects of amino acid

substitution

We used three representative in silico programs, PolyPhen-

2 (Adzhubei et al. 2010), SIFT (Ng and Henikoff 2003),

and PANTHER SNP scoring tool (Thomas et al. 2003), to

predict the phenotypic effect of an amino acid-substituting

variant. The three predictors use different algorithms and

thus may give a different prediction for the same variant.

To set up SIFT and PANTHER locally, we downloaded

SIFT (Linux version 4.0.2) from http://sift.jcvi.org, PAN-

THER SNP scoring tool (Linux version 1.01) from

http://www.pantherdb.org/downloads and SWISSPROT

from ftp://ftp.ncbi.nih.gov/blast/db/FASTA. As a reference

protein database, we used Swiss-Prot for SIFT and PAN-

THER 6.1 for PANTHER. We executed PolyPhen-2 online

(http://genetics.bwh.harvard.edu/pph2) through batch pro-

cessing and summarized the results. Score thresholds to

distinguish damaging variants from neutral polymorphisms

were set according to the suggested value in each program.

All statistical analyses were performed using R 2.9.1 sta-

tistical software (http://www.r-project.org).
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Extended cancer gene network

The human protein–protein interaction network was con-

structed from the BioGRID, DIP, HPRD, and MINT dat-

abases (Supplemental Table 1). It is composed of a total of

54,965 non-redundant interactions between 11,713 human

proteins. The list of 811 known cancer genes was retrieved

from the Online Mendelian Inheritance in Men (OMIM)

Morbid Map (http://www.omim.org/downloads) and

merged with the human protein network. To determine the

relative importance of the gene from an input variant, we

used the shortest distance between the gene and its nearest

known cancer genes (closeness to cancer genes), which

was calculated using the Dijkstra’s algorithm (Dijkstra

1959).

Breast cancer gene network

Tissue expression profiles were retrieved from the ALEXA-

seq data (http://www.alexaplatform.org/alexa_seq/Breast/

Summary.htm), which were measured by mapping reads to

transcript or genomic sequences and calculating the

observed average coverage of the mapped reads (Griffith

et al. 2010). The ALEXA-seq data contained a large number

of expressed sequence reads and showed a total of 13,546

genes, which were expressed in normal luminal epithelial

and myoepithelial breast tissues and human mammary epi-

thelial cells. We obtained the breast cancer gene network by

removing all interactions of genes that are not expressed in

normal breast tissues. Subsequently, the breast cancer gene

network is composed of 36,824 interactions between 7,163

human proteins.

A Bayesian ensemble of multiple predictors and cancer

gene network

By Bayes’ theorem, the posterior probability measure

P(H1|d) of a variable given the data value (d) is the product

of the prior probability measure P(H1) and the likelihood

function P(d|H1) divided by P(d).

pðH1jdÞ ¼
pðdjH1Þ � pðH1Þ

pðdÞ :

According to the law of total probability, P(d), which is

the prior or marginal probability of d and acts as a

normalizing constant, can be replaced by the equivalent

form as follows:

pðdÞ ¼
X

i

pðd \ HiÞ ¼
X

i

pðdjHiÞ � pðHiÞ:

Therefore, the posterior probability distribution can be

calculated with Bayes’ theorem by multiplying the prior

probability distribution by the likelihood function and then

dividing by the normalizing constant, as follows:

pðH1jdÞ ¼
pðdjH1Þ � pðH1ÞP

i pðdjHiÞ � pðHiÞ

where the sum over all possible mutually exclusive

hypotheses should be 1.

In our problem, the null hypothesis H0 is that a variant is

neutral and the alternative hypothesis H1 is that the variant

is deleterious. One of the main ideas is that variants of

known cancer genes or their neighboring genes with close

interactions are more likely to have a deleterious effect on

cancer development than those of the genes with distant or

no interactions, suggesting that the prior probability, P(H1),

that a variant will be deleterious may be different accord-

ing to the relative importance of the corresponding gene on

the cancer gene network. We can calculate deleterious

scores (s1, s2, …, sn) of the variant using the three pre-

diction programs (n = 3) and compute the empirical score

distributions (likelihood function) of each of the three

programs for deleterious mutations and neutral polymor-

phisms. Likelihood function P(si|deleterious) can be cal-

culated using the score distribution of the 23,336 disease

variants, and P(si|neutral) can be calculated using the

36,232 polymorphisms. Therefore, the posterior probability

P(deleterious|si) that the variant will be deleterious given

the scores can be well calculated with Bayes’ theorem.

A composite likelihood statistic described above as the

posterior probability P(deleterious|si) was used and the

cancer-associated missense mutation (CAM) score was

defined as follows:

CAM ¼
Yn

i¼1

pðdeleteriousjsiÞ

¼
Yn

i¼1

pðsijdeleteriousÞ � p
pðsijdeleterious� pþ pðsijneutralÞ � ð1� pÞ :

The composite likelihood statistic was previously used

to predict causal variants of positive selection and showed

a good prediction performance (Grossman et al. 2010). The

prior probability P(H1) of the variant being damaging was

defined as a function of closeness to cancer genes

p = (9 - d)/10 where d is the shortest distance (number

of links) to the nearest cancer gene on the cancer gene

network. Accordingly, the prior probability P(H0) that the

variant is not deleterious (neutral) is defined as 1 - p.

Because d is 0 for the known cancer genes and the

observed farthest distance is 8 on the network

(Supplemental Figure 1), the prior probability p increases

from 0.1 to 0.9 continuously as the gene of interest gets

closer to the cancer genes. Since we constructed two

network models including general cancer gene network and

sub-type cancer gene network, p value of each gene can be
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different according to the network. If there is no link

between the gene and any cancer genes and thus d is not

determined, p is given as the proportion of disease

mutations out of all the variants of the genes

disconnected to the known cancer genes in our data

(=522/14,946). Therefore, the CAM scores depend not only

on the relative probability of a variant being deleterious,

but also on the association of the corresponding gene to

cancer. Because the CAM score is the approximate

posterior probability that the variant is deleterious, one

can prioritize potentially deleterious variants based on their

scores. The source code written in C and Perl is freely

available to academic users at https://sourceforge.net/

projects/cdv/files.

Performance evaluation

To compare the prediction performance of the proposed

method and other existing methods, we constructed a

threshold-independent receiver operating characteristics

(ROC) curve. Based on the ROC curve, a numeric measure,

area under the ROC (AUROC), was estimated by the R

software. Other measures including sensitivity, specificity,

positive predictive value (PPV), negative predictive value

(NPV), correlation coefficient, true positive cost, and

overall accuracy were also used to evaluate prediction

performance. True positive (TP) is the number of cancer

mutations correctly predicted, false positive (FP) is the

number of neutral polymorphisms incorrectly predicted,

true negative (TN) is the number of neutral polymorphisms

correctly predicted, and false negative (FN) is the number

of cancer mutations incorrectly predicted. The definitions

are as follows: sensitivity = TP/(TP ? FN), specific-

ity = TN/(TN ? FP), PPV = TP/(TP ? FP), NPV = TN/

(TN ? FN), correlation coefficient = (TP 9 TN - FP 9

FN)/((TP ? FP) 9 (TP ? FN) 9 (TN ? FP) 9 (TN ?

FN))1/2, true positive cost = FP/TP, and overall accu-

racy = (TP ? TN)/(TP ? TN ? FP ? FN). For genes

with predicted damaging mutations, we conducted litera-

ture review for hundreds of published papers and examined

the association of the candidate genes with cancers.

Pathway enrichment analysis

To investigate the relevance of genes with mutations pre-

dicted to be deleterious with carcinogenesis, we performed

gene set analyses using the WebGestalt (WEB-based GEne

SeT AnaLysis Toolkit) program (http://bioinfo.vanderbilt.

edu/webgestalt) (Zhang et al. 2005). We selected signifi-

cantly enriched Kyoto encyclopedia of genes and genomes

(KEGG) pathways using the hypergeometric test, and

P values were adjusted by the Benjamini and Hochberg

false discovery rate-controlling procedure.

Results

Prediction for cancer mutations and neutral variants

The overall analysis flow is summarized in Fig. 1. As a first

step, we calculated prediction scores of individual predic-

tors, PolyPhen-2, SIFT, and PANTHER for the 23,336

disease variants and 36,232 polymorphisms (see ‘‘Materi-

als and methods’’).

The prediction performance of the predictors was eval-

uated for 3,545 cancer mutations and 22,531 neutral vari-

ants whose functional consequences were predicted by all

the individual predictors to combine their results (Fig. 2a).

According to the binary classification of PolyPhen-2

(neutral for PolyPhen-2 score B 0.2 or deleterious for

score [ 0.2), among the 3,545 cancer mutations predicted,

1,012 (28.5 %) were predicted to be neutral and 2,533

(79.7 %) to be deleterious. For the 22,531 polymorphisms,

PolyPhen-2 predicted 9,283 (41.2 %) to be deleterious and

13,248 (58.8 %) to be neutral. Among the cancer muta-

tions, 2,209 (62.3 %) were predicted to be damaging by

SIFT (SIFT score B 0.05) and 1,336 (37.7 %) to be neu-

tral. Among the polymorphisms, 7,382 (32.8 %) were

predicted to be damaging and 15,149 (67.2 %) to be neu-

tral. The 1,933 (54.5 %) cancer mutations were predicted

to be damaging by PANTHER (sub-PSEC score B -3),

and 1,612 (45.5 %) were predicted to be neutral. PAN-

THER predicted 5,687 (25.2 %) polymorphisms to be

damaging and 16,844 (74.8 %) to be neutral. Noticeably,

only a small fraction of both cancer mutations (27.3 %) and

polymorphisms (22.2 %) were incorrectly predicted by the

proposed CAM method, while the individual predictors

predicted many polymorphisms to be damaging (false

positives) in PolyPhen-2 and many cancer mutations to be

neutral (false negatives) in PANTHER (Fig. 2a). Distri-

bution of the CAM scores of cancer mutations and neutral

polymorphisms was significantly different (Wilcoxon rank

sum test, P \ 2.2 9 10-9) (Supplemental Figure 2).

According to the refined threshold based on the ROC

curve, PolyPhen-2 was superior to the other individual

predictors regarding sensitivity, while SIFT showed a

better performance regarding specificity (Fig. 2b, Supple-

mental Table 2). Although an ensemble approach

(Ensemble) with a uniform prior probability outperformed

all the individual predictors, the proposed CAM method

was superior to the Ensemble. We also compared the

prediction performance of the predictors using several

measures under the condition to achieve a sensitivity of

80 % (Table 1). While predicting 80 % of the cancer

mutations correctly, the individual predictors predicted

\50 % of the neutral variants correctly with a low positive

predictive value and a high true positive cost. Of the

individual predictors, PolyPhen-2 showed the best

18 Hum Genet (2013) 132:15–27
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prediction results. The CAM method showed the best

performance regarding all the performance measures.

When we categorized 3,545 cancer mutations and

22,531 neutral variants according to the protein class of the

corresponding gene, we observed that some protein classes

showed a relatively high frequency of cancer mutations

(Fig. 3a). For example, genes of the ‘transcription factor’

protein class showed the highest frequency of cancer

mutations (47.2 %, 1,384/2,932) and several other classes

also showed a high frequency: 34.5 % for ‘ligase’, 34.1 %

for ‘phosphatase’, 29.3 % for ‘kinase’, 20.7 % for ‘trans-

ferase’, 16.9 % for ‘nucleic acid binding’, 14.7 % for

‘lyase’, 13.0 % for ‘cytoskeletal protein’, and 10.2 % for

‘hydrolase’. The absolute number of cancer mutations was

high in the ‘transcription factor’ (1,394 cancer mutations),

‘transferase’ (626), and ‘kinase’ (586) classes. SIFT

showed a good performance for the ‘transcription factor’

and ‘cytoskeletal protein’ classes (Fig. 3b). PolyPhen-2

showed a good performance particularly for ‘ligase’ and

was superior to the other two predictors for the overall

classes. PANTHER showed a slightly higher AUROC

compared to the others for the ‘nucleic acid binding’ class.

The CAM method showed the best prediction performance

compared with the individual predictors. In particular, it

showed AUROC values of more than 0.85 for the classes

with highly frequent cancer mutations such as ‘transcrip-

tion factor’, ‘ligase’, and ‘phosphatase’.

Application to somatic mutations in cancers

For 1,672 somatic mutations of human protein-coding

genes that were previously identified in human cancers

(Sjoblom et al. 2006), we predicted the functional conse-

quence of the mutations using the CAM method and

investigated the top 24 mutations that were predicted to be

deleterious (CAM score [ 0.9) (Supplemental Table 3 for

the gene list of CAM score [ 0.122 determined based on

the ROC curve). Among the genes of the 24 mutations,

four genes (MPO [p.R477Q, CAM = 0.986], SMAD4

[p.P130S, CAM = 0.979], CDS1 [p.K204T, CAM =

0.956], and HNF1A [p.K273E, CAM = 0.934]) were pre-

viously known to be related to colorectal or breast cancers

and were registered in OMIM.

Although many other genes have not been registered as

cancer genes for the corresponding cancer in OMIM, they

were previously found to be associated with carcinogenesis

or tumorigenesis in various other cancers or tumors. Copy

number analysis showed that RPS6KB1 (p.G289E,

CAM = 0.969) was amplified and overexpressed in breast

tumors and cell lines (Sinclair et al. 2003). Knockdown of

contactin-1 (CNTN1) (p.P794H, CAM = 0.964) expression

was shown to suppress invasion and metastasis of lung

adenocarcinoma cells (Su et al. 2006). The 399-Gln allele

of XRCC1 (X-ray repair complementing defective repair

in Chinese hamster cells) (p.R350W, CAM = 0.956) was

Fig. 1 Flowchart of overall analysis
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shown to significantly increase the risk of breast cancer in

Caucasian women (Sterpone et al. 2010). TGM2 (p.G660V,

CAM = 0.948) was commonly hypermethylated in

primary brain tumors (Dyer et al. 2011). Noticeably, IDH1

(p.R132C, CAM = 0.945) mutation status was found to be

correlated with the overexpression of known glioblastoma

multiforme survival genes (Masica and Karchin 2011).

Interestingly, TNS4 (p.R642C, CAM = 0.943), also

referred to as CTEN, was reported to be linked to tumor

progression and various cancer types including thymoma

and colorectal, breast, and prostate cancers (Albasri et al.

2009; Barbieri et al. 2010; Katz et al. 2007; Li et al. 2010;

Liao et al. 2009; Lo and Lo 2002; Sasaki et al. 2003).

EPHA7 (p.R371W, CAM = 0.925) was down-regulated in

colorectal cancer by promoter hypermethylation but was

expressed at a substantial level in most human lung cancers

Fig. 2 The CAM method

distinguishes cancer mutations

from neutral polymorphisms

better than the individual

predictors. a Score distributions

of cancer mutations and neutral

polymorphisms. Scores denote a

prediction probability for

PolyPhen-2, SIFT and CAM,

and a sub-PSEC score for

PANTHER, respectively. True

positives (TP) indicate cancer

mutations predicted to be

damaging (red rectangles), and

true negatives (TN) indicate

polymorphisms predicted to be

neutral (blue rectangles). False

positives (FP) and false

negatives (FN) indicate

incorrectly predicted cancer

mutations and polymorphisms,

respectively. b Prediction

performance of the CAM

method and the individual

predictors. The CAM method

outperformed an ensemble

approach with a uniform prior

probability (set as 0.5) as well

as all the individual predictors

(color figure online)
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(Tsuboi et al. 2010). A previous study found that tumor

cells with down-regulation of MAP3K6 (p.P869T, CAM =

0.924) expression showed significant suppression of tumor

growth, and VEGF expression was regulated by MAP3K6,

and suggested that it may play a crucial role in both

angiogenesis and tumorigenesis (Eto et al. 2009). AMPD1

(p.P633H, CAM = 0.920) was revealed to be associated

with colorectal cancer risk in a previous single-nucleotide

polymorphism study (Webb et al. 2006). AKAP3 (p.R831C,

CAM = 0.916) mRNA expression correlated with worse

overall survival in patients with ovarian cancer (Sharma

et al. 2005). Other top genes with predicted deleterious

Table 1 Comparison of the prediction performance (at the sensitivity

level of 0.8)

Performance measure PolyPhen-2 SIFT PANTHER CAM

Sensitivity 0.800 0.798 0.800 0.801

Specificity 0.485 0.463 0.438 0.692

PPV 0.197 0.190 0.183 0.290

NPV 0.939 0.936 0.933 0.957

Correlation coefficient 0.197 0.181 0.166 0.349

True positive cost 4.088 4.274 4.461 2.445

Overall accuracy 0.528 0.509 0.487 0.707

PPV positive predictive value, NPV negative predictive value

Fig. 3 Prediction performance

according to protein class of the

genes. a Each circle represents a

group of genes for each protein

class. Circle sizes are

proportional to the frequency of

cancer mutations among the

total variants. b Prediction

performance of the predictors is

shown for the protein class with

frequent cancer mutations

Hum Genet (2013) 132:15–27 21
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mutations (CAM [ 0.9) such as SIGLEC7 (p. L215P,

CAM = 0.968), KCNQ5 (p.R244C, CAM = 956), SMAD2

(p.D300V, CAM = 0.955), FCN1 (p.Y175C, CAM =

0.949), SPLTC1 (p.R239W, CAM = 0.944), G6PC

(p.P116L, CAM = 0.926), LMNB2 (p.R216W, CAM =

0.908), and ACADM (p.P132R, CAM = 0.906), were not

previously reported to be associated with cancer and need

to be further investigated (Supplemental Table 3).

Gene set analyses revealed that the 183 genes with the

predicted deleterious mutations listed in Supplemental

Table 3 were enriched in many KEGG pathways related

to carcinogenesis (corrected P \ 0.05) (Supplemental

Table 4). The KEGG pathways identified include various

cancer pathways such as colorectal, thyroid, endometrial,

pancreatic, prostate, and bladder cancers. The most enri-

ched KEGG pathway was hsa05200, which is related to

various important characteristics of cancer including sus-

tained angiogenesis, evading apoptosis, proliferation, and

insensitivity to anti-growth signals (Supplemental Fig-

ure 3). Noticeably, the Wnt signaling, JAK-STAT, ErbB

signaling, TGF-beta signaling, and the VEGF signaling

pathways were detected, which are well-known and

important pathways related to carcinogenesis. We not only

examined mutations in known cancer genes, but also ana-

lyzed mutations in previously unknown cancer genes,

which interact with known cancer genes. Figure 4 shows

that the Wnt signaling pathway includes several known

cancer genes as well as some previously unknown genes

with possible damaging mutations. Enrichment of the

LIG1, PARP1, and XRCC1 genes in the base excision

repair pathway was also observed. In contrast, the 259

genes with predicted neutral polymorphisms were signifi-

cantly enriched in the KEGG pathways which are less

related to cancers, such as metabolic pathways, ABC

transporters, Fc gamma R-mediated phagocytosis, fatty

acid metabolism, circadian rhythm, lysosome, etc. (Sup-

plemental Table 5). These results imply that deleterious

genetic changes at the pathway level may be needed for the

development of cancer and account for inter-tumoral het-

erogeneity at the gene level.

Prediction with a breast cancer gene network

Because different types of cancer show diverse mutational

patterns according to their sub-type as well as frequent

mutations in commonly identified genes, utilizing a more

specific sub-cancer gene network might be beneficial in

determining deleterious mutations affecting a particular

sub-type of cancer. Genes playing a critical role in carci-

nogenesis of breast cancer are likely to be expressed in the

breast or mammary gland tissues, while genes that are not

expressed in those tissues are not likely to be involved in

the carcinogenesis.

To examine the usefulness of breast tissue expression

profiles in predicting breast cancer mutations, we con-

structed a breast cancer gene network, which is composed

of genes expressed in normal breast tissues. The number of

genes (11,713) in the general cancer gene network without

expression information was reduced by 39 % in the breast

cancer gene network (7,163), resulting in 33 % reduction

of the interactions (from 54,965 to 36,824). The breast

cancer-specific CAM method utilizing this reduced net-

work distinguished the breast cancer mutations from the

neutral polymorphisms more accurately than the general

cancer CAM method and the individual predictors (Sup-

plemental Figure 4). The AUROC was the highest in the

breast cancer gene network (0.67 in PANTHER; 0.69 in

SIFT; 0.70 in PolyPhen-2; 0.87 in the general cancer CAM

method; and 0.90 in the breast cancer specific CAM

method) (Fig. 5).

Using the breast cancer-specific CAM method, we pri-

oritized 268 somatic mutations in breast cancer tissues or

cell lines obtained from previous large-scale sequencing

studies (Greenman et al. 2007; Sjoblom et al. 2006). By the

threshold CAM score of 0.145 (the best performance

determined based on the ROC curve), 81 mutations were

predicted to be damaging (Supplemental Table 6).

The genes with CAM score [ 0.145 and evidence of

literature for their association with breast cancer are listed

in Supplemental Table 7. Several top genes were reported

to be related to breast cancer or other cancers. For example,

the LYN gene with the highest CAM score (p.D385Y,

CAM = 0.969) was previously identified as a potential

target for dasatinib in breast cancer (Choi et al. 2010;

Hochgrafe et al. 2010) and imatinib in chronic myeloid

leukemia (Wu et al. 2008). High expression of CSNK2A1

(p.D297H, CAM = 0.962) was predictive of a poor diag-

nosis in non-small cell lung cancer patients (Wang et al.

2010). Checkpoint kinase 2 (CHK2, CDS1 [p.K204T,

CAM = 0.956], RAD53) is activated by ataxia telangiec-

tasia mutated (ATM) in response to gamma irradiation and

mutations of the gene were found in various sporadic

cancers (Miller et al. 2002). The human Cds1 kinase

(hCds1/Chk2) regulated BRCA1 function after DNA

damage by phosphorylating serine 988 of BRCA1 (Lee

et al. 2000). FGFR2 (p.R203C, CAM = 0.946) showed

strong associations with breast cancer (Gaudet et al. 2010),

and an FGFR2-IIIb-specific antibody exhibited antitumor

activity (Bai et al. 2010). TCF1 (p.K273E, CAM = 0.934)

encoding hepatocyte nuclear factor 1 alpha (HNF1A) was

mutated in endometrial tumors, but not in breast or ovarian

tumors (Rebouissou et al. 2004). Somatic mutations of

MAP3K6 (p.P869T, CAM = 0.924) were observed in

gastric cancer cell lines, and MAP3K6 was recurrently

altered in both primary tumors and cell lines (Zang et al.

2011). Many previous studies showed the association of
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ATF2 (p.D352H, CAM = 0.917) with breast cancer (Baan

et al. 2010; Knippen et al. 2009; Liu et al. 2009; Maekawa

et al. 2007, 2008; Song et al. 2006). A previous combined

analysis of genome and transcriptome data revealed new

RNA-editing events that recode the amino acid sequence of

COG3 (p.R620C, CAM = 0.911) in metastatic lobular

breast cancer patients (Shah et al. 2009).

Functional validation of those genes is needed to test

their direct associations with tumorigenicity of breast

cancer. Among the top genes, the SPTLC1 (p.R239W,

CAM = 0.944), ACADM (p.P132R, CAM = 0.906),

STRBP (p.G280R, CAM = 0.851), and SLC7A7 (p.P413S,

CAM = 0.831) genes were not previously reported and

may be good candidates for further functional study.

Fig. 4 Accumulation of

predicted damaging mutations

of known or unknown cancer

genes in the Wnt pathway

Fig. 5 Area under the receiver operating characteristics curve

(AUROC) calculated for distinguishing breast cancer mutations from

neutral polymorphisms
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Approximately 59 % of genes with predicted damaging

mutations have been reported to be related to cancers

(43 % related to breast cancers) (Supplemental Table 7).

On the contrary, only 31 % of genes with predicted neutral

variants have been reported to be related to breast cancers

in previous studies.

Discussion

In this study, we proposed the utilization of a disease gene

network to determine the effect of mutations on a particular

disease by considering the importance of the corresponding

gene in the network. The combined individual predictor

programs have been widely used for interpreting novel

variants in patients with various pathological conditions

and they are generally helpful for screening candidate

deleterious mutations. With the combined predictors, the

proposed Bayesian method, which used cancer gene net-

work information, successfully improved the prediction

performance.

By applying the proposed method to predict the func-

tional consequence of the mutations found in colorectal and

breast cancer tumors, we could prioritize the mutations

according to their predicted deleterious effect on a cancer

phenotype. Several genes were reported in previous studies

to be linked to other type of cancers, which suggests their

potential relevance to carcinogenesis. The candidate

mutations can be confirmed by re-sequencing tumor sam-

ples from additional patients with colorectal or breast

cancers. In particular, gene set analyses showed a signifi-

cant enrichment of the genes with predicted deleterious

mutations in many cancer pathways and important path-

ways related to carcinogenesis. For example, the Wnt

signaling and VEGF signaling pathways were identified,

which is consistent with a previous result showing that

heregulin induced VEGF secretion via the erbB3 signaling

pathway in colon cancer cell lines (Yonezawa et al. 2009).

The proposed cancer gene network method not only

captures gene interactions of currently known pathways,

but also provides a flexible extension of the network. In

particular, the method detected the candidate genes, SIG-

LEC7, KCNQ5, SMAD2, FCN1, and LMNB2 in colon

cancer, and SPTLC1, ACADM, STRBP, and SLC7A7 in

breast cancer, which had predicted deleterious mutations

but were not previously reported. The results suggest that

predicting identified mutations individually with the con-

sideration of pathway information is useful for interpreting

the functional consequence of the mutations regarding a

particular phenotype.

The classified label (disease mutation and neutral

polymorphism) of each variant obtained from the Swiss-

Prot database is not definitive and cannot be used for

clinical or diagnostic purposes and thus it might contain

uncertain variants disrupting the prediction performance.

The more the information, such as accurate mutation data

and cancer genes that is accumulated, the higher is the

accuracy of the proposed model. In addition, alternative

gene prioritization methods may be used to define the prior

probability p and their performances need to be evaluated

(Barabasi et al. 2011). Merging the recently developed

methods into our integrated model which utilized diverse

properties other than sequence homology and conservation

might improve the performance (Huang et al. 2010, 2011,

2012; Kumar et al. 2011; Ye et al. 2007). Nevertheless, our

analysis correctly identified known cancer genes as well as

candidate genes with the predicted deleterious mutations.

For example, the mutation of TNS4, a well-known cancer

gene, was successfully detected by the proposed method,

but was omitted from the OMIM Morbid Map.

Different cancers show distinct expression patterns and

mutational spectrums, but also share mutations in concur-

rent genes such as TP53 and KRAS (Kan et al. 2010).

Constructing different prediction models for each cancer

type is possible by utilizing the gene expression data of

each type of cancer or normal tissue. To demonstrate this,

we constructed a breast cancer gene network, since RNA-

seq data with high coverage and accuracy for normal breast

tissues were available. We showed that utilizing the

expression data and constructing a breast cancer-specific

network increased the prediction accuracy for breast cancer

mutations over the general cancer gene network. Expres-

sion data for other normal tissues are expected to be

available due to ongoing research and projects such as

the Human Body Map project for comprehensive tissue

expression profiles generated by high-throughput

sequencing technology. These data will be utilized as prior

knowledge and used to test the proposed method for other

cancer types. Although gene expression information in

cancer is of great potential importance for the network,

there might be substantial variation of gene expression

even in the same cancer tissues, and we need further

investigation to utilize this important information.

We found that the proposed Bayesian ensemble

approach with a disease gene network can be useful to

interpret their mutations with regard to potential functional

consequences corresponding to a certain phenotype. On the

other hand, these results show the usefulness of a disease

gene network in predicting disease-specific variations and

also suggest that the same approach might be applicable to

other diseases, especially complex diseases affected by

multiple rare causal variants of genes involved in key

pathways. The integrative approach will hold promise for

identifying the causal genetic variation of cancer based on

each patient’s genetic profile and offer a basis for person-

alized treatment for human cancers.
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