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Phenotypes of diseases, including prognosis, are likely to have complex etiologies and be derived from
interactive mechanisms, including genetic and protein interactions. Many computational methods have been
used to predict survival outcomes without explicitly identifying interactive effects, such as the genetic basis
for transcriptional variations. We have therefore proposed a classification method based on the interaction
between genotype and transcriptional expression features (CORE-F). This method considers the overall
“genetic architecture,” referring to genetically based transcriptional alterations that influence prognosis.
In comparing the performance of CORE-F with the ensemble tree, the best-performing method predicting
patient survival, we found that CORE-F outperformed the ensemble tree (mean AUC, 0.85 vs. 0.72). Moreover,
the trained associations in the CORE-F successfully identified the genetic mechanisms underlying survival
outcomes at the interaction-network level. Details of the learning algorithm are available in the online
supplementary materials located at http://www.biosoft.kaist.ac.kr/coref.
l rights reserved.
© 2011 Elsevier Inc. All rights reserved.
1. Introduction

The architecture that underlies complex phenotypes consists of
interactions among genetic, transcriptomic, and proteomic features,
such as SNPs, and the expression of genes and proteins. Exploration of
epigenetic and eQTL (expression quantitative loci) interaction net-
works is increasingly recognized as an important approach to
understanding disease phenotypes. The enumeration of network
components by identifying molecular-level interactions may enhance
predictions of disease outcome [1,2] and cancer metastasis [3]. A
computational method that can model the interactions between
genetic and transcriptional signatures may help uncover genetic
mechanisms and may assist in more precisely diagnosing and
predicting prognosis of patients.

Various types of possible predictors of disease phenotypes have
been suggested, including expression of proteins [4] and alternative
splicing events [5]. Particularly in genetics, the diagnosis of disease
and the prediction of its progression have been based on genome-
wide association studies. These studies have identified genetic
variations associated with various diseases, including heart disease
[6] and diabetes [7], although experimental support for the functional
roles of the identified loci is incomplete in many cases. The genetic
architecture modeling approach has demonstrated that genetic
variations regulate gene expression, both directly and indirectly,
lead to phenotype variations associatedwith disease [8–10], including
response to drugs [11]. These results have shown that a classification
algorithm that incorporates a model of genetic architecture (i.e. a map
of genetic causality of transcriptional signatures and phenotype
variations) may assist in predicting patient prognosis.

Generally, tree-based approaches have been utilized to predict
patient survival outcomes; for example, the CART (classification and
regression tree) [12], random survival forest [13], and ensemble tree
[14] methods. Since the hierarchical structure of trees assumes
recursive splits at each node, this method may be inefficient in
detecting interactions within training data [15]. Tree-based
approaches have therefore had limited success in training interaction
models that include epistatic effects in SNP–SNP interactions [16].
Although analysis of genetic architecture is a promising route to
understanding disease phenotypes and underlying mechanisms
[17,18], tree-based survival predictionmethods have been insufficient
for the learning of genetic interactions that contribute to complex
traits [19], such as the prognosis of cancer patients. Thus, the
development of a classification method for disease survival outcome
that includes consideration of the underlying genetic architecture
remains a challenge in genetics and bioinformatics.

We have developed a novel classification method, based on the
interaction between genotype and transcriptional expression features
(CORE-F), to predict the prognosis of cancer patients. This method
learns the associations among genotypes and transcriptional signa-
tures in models of “genetic architecture,” that is, maps of the genetic
variations that drive phenotypic variations via interactions with
transcriptional alterations [8]. The developed kernel function in the
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CORE-F algorithm was designed to predict the class label of survival
phenotypes based on genetic architecture consisting of interactions
between SNPs and expression signatures. The present study consists
of three parts: 1) the continuous labeling of survival outcomes, 2)
selection of survival associated features, genotypes and expression
signatures via statistical analyses, and 3) building and validating the
training results of the CORE-F algorithm. We utilized a set of tissue
samples from patients with ovarian cancer, obtained from The Cancer
Genome Atlas (TCGA) consortium [20], to validate the performance of
CORE-F relative to that of the ensemble tree [14] method, which has
outperformed other tree-based approaches without overfitting. To
identify loci and expression signatures associated with survival, we
prepared four sets of expression signatures and SNPs in prognosis-
related pathways (part 2). Supervised learning of the CORE-F
algorithm (part 3) was accomplished by dividing the continuous
label of survival outcomes into two classes, true (poor outcomes) and
false (good outcomes), using a cut-off parameter. For the modeling of
genetic architectures, genetic associations among gene expression
levels and survival classes were determined by training (part 3) and
were introduced into the designed kernel function of CORE-F. CORE-F
outperformed the ensemble tree, with a 13% performance improve-
ment of AUC, indicating that, by focusing on genetic architectures, we
successfully developed novel frameworks for predicting survival
outcomes.

2. Results

We developed a method for the supervised classification of
survival outcomes based on “genetic architecture,” consisting of
SNPs and expression signatures associated with trait variations
(survival outcomes) via their interactions. Survival outcomes of
cancer samples might be presented with unbounded scale depending
on the heterogeneity and censoring of survivorship. In this regard, we
utilized a developed membership function (μ), which graded survival
times on a bounded scale [0, 1] (Fig. 1a). Sets of genotypes and
expression signatures belonging to various prognosis-related path-
ways were analyzed for survival-associated feature selections,
respectively. After the statistical analysis (Fig. 1b and c), sets of
genotypes at the j-th locus (gij) and transcriptional signatures in the
k-th gene (eik) were prepared for each of the samples i. Using a splitted
learning set, interactions between genetic variations and transcrip-
tional signatures for the true class of survival time (poor survival
outcomes) were trained (Fig. 1d). Using the trained interactions
between genotypes and expression signatures, we utilized the kernel
function of the CORE-F algorithm (σ), a designed fractional function,
to measure the scores that predicted a true class (poor survival
outcome) while considering the model of genetic architecture
(Fig. 1e). The CORE-F was then used to determine the true class
using the kernel function-derived value and the decision parameter, θ
(σ Nθ→1) (Fig. 1e). In summary, statistical analyses were used to
prepare different sets of genotypes and expression signatures for each
of the corresponding pathways, and trained interactions between
SNPs and expressions within learning sets were routinely tested for
the building of CORE-F.

2.1. Class labeling for disease survival outcomes

Because typical approaches utilize proportional hazard ratios to
determine the relative risk for patients [7], classification of samples
according to individual survival time is widely desired. The member-
ship function we developed transformed survival times and censor-
ings of samples into graded class labels bounded by [0, 1], allowing
classification of samples by individual prognoses. The observed
survival outcomes were classified by two cut-off parameters: Pb for
poor survival outcome groups and Pg for good survival outcome
groups (0bPbbPg) (Fig. 2a). However, censoring of the survival times
and intermediate survival outcomes (Pbbsurvival timebPg) ham-
pered efforts to label the survival times with scalar values (Fig. 2a, b).
Therefore, the membership function from fuzzy set theory [21] was
used to transform the survival outcomes into class labels. In particular,
a cosine function was used to grade the class labels for survival times
with respect to survival time distribution curves (Fig. 2c). The
uncertainty in survival time for early censored cases, in which a
short period of survivorship was determined relative to the censoring
event, was also modeled by a membership function. The forked line in
Fig. 2d denotes the labeling uncertainty of the early censored survival
times, with a larger value of the survival class comparing early
deceased cases without censoring. Based on the fuzzy set theory
prediction of the class label degrees, the correlation coefficient (0.95)
between survival times and class labels indicated that the member-
ship function developed here appropriately labeled the survival times
(Fig. 2d). Due to the cutoff period for studies of survival in patients
with ovarian cancer, the thresholds for poor and good survival
outcomes were 1 and 5 years, respectively (Pb=1 year, Pg=5 year)
[22]. The purpose of the membership function was to provide a
gradient labeling scale for survivorship bounded by 0 and 1 in a
continuous manner. Therefore, the labels for prognoses were
introduced to select survivorship associated features for the training
of CORE-F, and were also utilized to determine true class (poor
survival outcomes) for the supervised learning of CORE-F.

2.2. Selecting SNPs and expression signatures in prognosis-related
pathways

Before the training of interactions between SNPs and expression
signatures, we selected survival associated SNPs and expression
signatures due to the lack of prognostic loci and expression signatures
with replicated results. Expression signatures and SNPs in four drug-
related pathways were analyzed as markers associated with survival
outcomes in patients receiving therapy for ovarian cancer, such as
drug treatment [23,24]. The drug-related pathways analyzed were
platinum-related, taxane-related, membrane transport ABC, and
cytochrome P450 pathways (Table 1). Member genes and
corresponding SNPs in the selected pathways were identified by the
method of Huang et al [25]. Using the resources of PharmGKB [26] and
KEGG [27], we identified 139 genes and 2746 corresponding SNPs.
Table 1 presents results of our analyses using two-step statistical
approaches (Fig. 1b and c). Since the object of this statistical approach
was to identify features associated with survival and CORE-F profiles
of the interactions between SNPs and gene expression in the training
set, we explored several SNPs and expression signatures associated
with survival in the entire set of samples. We identified 72 genetic
variations (SNPs) and 10 expression signatures as features signifi-
cantly associated with the class label of survival times (Table 1 in bold
characters). In the subsequent training step, four sets of interactions
between features in different pathways were trained independently
to build the CORE-F and ensemble tree routine depending on the
corresponding pathways. For example, using a set of SNPs and
alterations in expression in the membrane transport ABC pathway,
CORE-F learned interactions among 10 SNPs and two sets of
expression. In summary, our use of 1) a small number of survival
associated features in different pathways, 2) independent selection of
survival associated features without considering inter-relationships,
and 3) learning of interactions between SNPs and gene expression for
each training set indicate that CORE-F trained without overfitting.

2.3. Building and validation of CORE-F

CORE-F was constructed using the trained interactions between
SNPs and expression signatures in the selected pathways, as described
in Methods section. The power of CORE-F was tested by comparing its
performancewith that of the ensemble tree, which guarantees effective



Fig. 1.Overviewof feature selection and classifier construction. a) Continuous class labeling of survival outcomes. b) Selection of genotype features using statistical analysis. c) Selection of
expression features by statistical analysis. d) Training process. e) Classification of the survival class using the kernel function of CORE-F.
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training of multiple features without overfitting [14]. Although we
tested trained interactions among four sets of SNPs and expression
signatures in selected pathways, only the best-performing interactions
between member SNPs and expression signatures in each single
pathwaywere utilized in further analyses. As shown in Table 2, the best
results of CORE-F were achieved using a training regimen that involved
interactions among 12 prognostic features of the membrane transport
ABC pathway (10 SNPs and two expression signatures). In comparison,
the ensemble tree performed optimally after a training regimen
involving 23 features of the platinum-related pathway (19 SNPs and
4 expression signatures). We therefore validated the performance of
CORE-F by comparing its best-performing results with the membrane
transport ABC pathway and the best-performing results of the
ensemble tree with the platinum-related pathway.

The optimized classifiers that yielded the best performances
(listed in Table 2) were used to evaluate the performances of CORE-
F and the ensemble tree using 10-fold cross-validation and Kaplan–
Meier (KM) survival curves (Fig. 3a and b). We found that CORE-F
outperformed the ensemble tree with respect to cross-validation and
ROCs (mean AUC, 0.85 vs. 0.72), using sets of samples with genotype



Fig. 2. Class labeling scheme for disease outcome groups. a) Distribution of survival times. Pb and Pg denote the thresholds for the classification of poor and good outcome groups,
respectively. b) Presentation of observed survival times in the prepared data set (S={(si, δi ),…(sn, δn)}, 1≤ i≤n ). c) Distribution of survival times. d) Results of class labeling for
survival outcomes with the membership function μ (si, δi).
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and expression values that were complete, with no values missing for
interaction training. Similarly, CORE-F was superior to the ensemble
tree when assaying the overall set of samples with partial missing
values for interaction training (Fig. 3a; mean AUC, 0.77 vs 0.72),
indicating that CORE-F tolerated missing values. Typical missing
values were missing genotypes arising from the preprocessing of
arrays. Because the ensemble tree also utilized the best-performing
Table 1
Selected SNPs and expression signatures.

Step 1) Significance of expected value for survival class label (p-valueb0.05)a

Pathway Genetic variations (SNPs) Expression signatures

Platinum-relatedb 138 8
Taxane-relatedb 119 1
Membrane transport ABCc 77 3
Cytochrome P450 (CYP450)c 81 2

Step 2) Difference in class values according to feature variations (p-valueb0.1)d

Pathway Genetic variations (SNPs) Expression signatures

Platinum-relatedb 30 6
Taxane-relatedb 17 1
Membrane transport ABCc 10 2
Cytochrome P450 (CYP450)c 15 1

a Background distribution describing the expected values in an analysis of the
p-value of each expected value is presented based on random permutations.

b Resource of PharmGKB.
c Resource of KEGG.
d Using the KS (Kolmogorov–Smirnov) test. The number of SNPs and expression

signatures in bold were utilized finally for the training of interactions and performance
validations.
set of SNPs and expression signatures to predict survival class labels,
the better performance of CORE-F highlights the advantages of genetic
architecture-based classification methods.

Due to the successful performance of CORE-F, the degree of
survival differences between classified labels was presented graph-
ically as KM survival curves. The predicted true class (poor survival
outcome) from the CORE-F algorithm resulted in clearly distinct
survival trends (p-value=5.06E-08), in contrast with the labeling
results of the ensemble tree (p-value=0.0001) (Fig. 3c). The better
performance of CORE-F was due to the application of a simple model
for genetic architecture with parsimonious features. The results of
these evaluations support the hypothesis that inspired the develop-
ment of CORE-F, specifically that the genetic architecture underlying
the transcriptional signature and survival traits could produce
precisely classify survival outcomes.
Table 2
Optimized classifiers for CORE-F and ensemble tree methods.

Pathway Genetic variants
(SNPs)

Expression
signatures

Parameters

CORE-F Membrane
transport ABC

10 2 C=0.14a, θ=0.27b

Ensemble
tree

Platinum-related 19c 4c C’=0.63d

a In Eq. (7), the true class of the survival class was defined by C as μ (si, δi)NC→1.
b In Eq. (7), the predicted class of survival was determined as θ:σ (si )Nθ → 1.
c After pruning of the ensemble tree.
d Using the ensemble tree, the predicted class of survival was determined by C’:

predicted class by the ensemble treeNC’→1.

image of Fig.�2


Fig. 3. Performance validation. a) Ten-fold cross validation of the CORE-F and ensemble treemethods. b) ROCs of CORE-F (left panel) and the ensemble tree (right panel). c) Kaplan–Meier
survival curves for the predicted classes of CORE-F (left panel) and the ensemble tree (right panel). The p-values for survival differences are presented at the bottom of the plots.
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3. Discussion

Although there is great interest in biological interactions (e.g.,
interactions in eQTL network and gene-environment interactions),
typical survival prediction algorithms using tree-based methods have
generally ignored feature interaction effects per se [28]. Using a model
of genetic architecture, we developed a novel and effective method,
CORE-F, that predicts survival outcomes from the interactions of
genetic and expression signatures. The major contribution of CORE-F
is its establishment of a classification method that learns the genetic
architecture for quantitative traits, such as cancer prognosis. Since
genetic architecture presents a model of genetic influence for trait
variation and transcriptional signatures, the utilization of CORE-Fmay
ameliorate predictions for other disease phenotypes associated with
genetic variations and gene expression profiles. Cross-validation and
KM survival curve analysis demonstrated that CORE-F more precisely

image of Fig.�3


Table 3
Overview of the selected samples.

Features of the TCGAa Totalb Selectedc

Number of ovarian cancer samples 213 99
Age

Mean, years (SDd) 60.2 (11.1) 59.2 (10.8)
Range 35 - 83.5 35 – 83.5

Tumor stage
II 2 (0.9%) 1 (1%)
III 171 (80.2%) 73 (73.7%)
IV 40 (18.7%) 25 (25.2%)

Survival outcomee

Mean overall survival, months (SDd) 32.3 (25.7) 28 (24.2)
N 1 year survival (%) 150 (70.4%) 58 (58.5%)
N 5 year survival (%) 29 (13.6%) 14 (14.1%)

Race
Caucasian 186 (87.3%) 99 (100%)
African American or Black 9 (4.2%)
Asian 5 (2.3%)
Others 13 (6.1%)

Vital status
Alive (censored) 96 (45.0%) 64 (64.6%)
Deceased (non-censored) 117 (54.9%) 35 (35.3%)

a Date of latest update, 9 September 2009.
b Age and/or survival outcome records; missing cases were discarded.
c Caucasian, platinum–taxane treated pathway; total number of agents≤3.
d SD: Standard deviation.
e Wilcoxon rank sum test (total vs. selected set) p-valueN0.05.
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classified samples from cancer patients into classes with poor or good
outcome than did the latest tree-based method, the ensemble tree
(13% enhanced AUC, distinct survival trend in the KM curve,
p-value=5.06E-08). Thus, the proposed method successfully unra-
veled the genetic issues surrounding survival prediction, showing that
tree-based methods ineffectively covered the interaction effects
described by genetic architectures, such as genetic regulation of
transcriptional variations and prognostic differences.

The kernel function of CORE-F may be a promising avenue for
identifying the functional roles of genetic variations relative to the
underlying genetic architecture. For example, polymorphisms in
ABCB1 are promising genetic markers [29,30] for ovarian cancer
prognosis, although there is no experimental support, such as
transcriptional profiles, for the functional roles of these SNPs. Through
the training of interactions between SNPs and expression signatures,
the kernel function of CORE-F presents the hypothesis that the genetic
architecture of ABCB1 is a trans-effect model; SNPs in ABCB1
(rs1202171 and rs1202172) contribute to the expression of ABC
transporters (ABCD4 and ABCG5), leading to differences in survival
outcomes (Supplemental Figure 1). A previous study of cooperating
genetic variations and transcriptional profiles [31] suggested that
target phenotype-associated SNPs are enriched in expression quan-
titative loci and that the interactions between SNPs and gene
expression are important for susceptibility to anti-cancer agents. In
support of this, the trained interactions in kernel function also showed
that genetic variations in ABCB1 (rs1202171 and rs1202172) result in
survival differences via transcriptional variations in the membrane
transport ABC pathway (p-value for interactionsb0.05, Supplemental
Figure 1). Therefore, exploring SNP-gene expression interactions in
other prognostic pathways, such as the platinum-related pathway,
may increase our understanding of the effects of individual variations
on survival outcomes in certain diseases including cancers.

Since early detection of cancer is associated with improved patient
prognosis [32], tumor stage may contribute to predictions of survival
outcomes. The CORE-F algorithm we utilized was designed based on
genetic and transcriptomic profiles rather than by integrating
information from cancer stages. To test whether adding stage
information improved CORE-F, we compared the results of 10-fold-
cross-validation with different data sets, including all 99 selected
samples in Table 3 and the subset of 73 samples from patients with
stage 3 cancers. We found, however, that information on cancer stage
had little effect on both CORE-F and the ensemble tree (AUC
differences of 0.02 and 0.03, respectively; Supplemental Figure 2).
Using an alternative method, the Wilcoxon-rank sum test of survival
outcome, we also found that higher cancer stage (≥ III) was an
underpowered predictor of patient survival (p-value 0.9). Despite the
minimal effect of higher cancer stage in predicting survival, it may be
of interest to estimate the prognostic power of early stage cancer
samples by expanded analysis using larger data sets including
samples at various stages.

Although we confirmed that CORE-F tolerated missing values in
the interaction training between SNPs and gene expressions, such as
the absence of several genotypes due to quality control of SNP arrays,
it was unclear for the degree of tolerances for missing values and
patient prognosis with missing values. This may be addressed by the
development of feature imputation methods. Although CORE-F
outperformed the ensemble tree in predicting binary class of
survivorships, such as good and poor prognosis, their relative ability
to predict intermediate survival is unclear and may require the
development of a multiclass classifier. To our knowledge, however,
CORE-F is the first algorithm to predict survival based on biological
principles: genes were selectively expressed according to given
genotypes under given environmental (or disease) conditions.
Including its biomedical benefits in successfully predicting patient
prognosis, trained interactions (Supplemental Figure 1) represent the
biological value of CORE-F in detecting the underlying genetic
mechanisms and the functional roles of genetic variations at the
transcript-network level.

4. Conclusion

In conclusion, we developed a novel algorithm, CORE-F, based on
underlying genetic architecture to predict the prognosis of cancer
patients. By increasing knowledge of genetic architectures and eQTL
networks, CORE-F may be used to better predict survival outcomes, as
well as enhancing biological insight.

5. Methods

5.1. Labeling of class survival outcome

Using the thresholds for poor/good survival outcomes, we
generated a membership function based on fuzzy set theory [21] to
transform the unbounded survival outcomes into bounded class labels
[0,1]. S was defined as a set of survivorship vectors that included
survival time (si) and a censoring indicator (δi) of the i-th sample (S=
{(s1, δ1), …(si, δi ),…(sn, δn )} 1≤ i ≤n). The censoring indicator
denotes the status of censoring (δi=1 for non-censored, 0 for
censored status). The survivorship vectors were graded by using a
developed membership function to transform the i-th vector of
survival into a class label for survival outcomes, yielding labeling
results between 0 and 1 (0≤μ(si, δi )≤1). Since the poor outcome
class was defined as a true class (survival time≤Pb→μ(si, δi)=1), the
survival time and censoring condition of the i-th sample in a non-
fuzzy case was transformed into a class label of survival time using the
equations:

Pb = threshold of poor prognosis;
Pg = threshold of good prognosis;

if si ≤ Pb and δi = 1→μ si; δið Þ = 1; ð1Þ

ifsi N Pg→μ si; δið Þ = 0: ð2Þ
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For intermediate survivorship with continuous values (0≤ μ (si,
δi)≤1), the following equation of membership function determined
the class labels:

if Pb b si ≤ Pg and δi = 1or 0ð Þ→ μ si; δið Þ = 1
2

+
1
2

cos
si−Pb
Pg−Pb

π

 !
:

ð3Þ

The uncertainty in survival time for the remaining cases, in which a
short period of survivorship was determined according to the early
censoring event, was also modeled by Eq. (3):

if si ≤ Pb and δi = 0→μ si; δið Þ = 1
2

+
1
2

cos
si−Pb
Pg−Pb

π

 !
: ð3Þ

Transformed class labels of survival times were utilized for feature
selection and learning of classifiers for both CORE-F and the ensemble
tree.

5.2. Survival associated feature selections using statistical analysis

Before the training of interactions between SNPs and gene
expression levels, prognosis associated features (SNP and expression
signatures) were determined in two steps: 1) identification of
features that yielded the expected, significantly high or low value of
survival class, and 2) capture of features that showed significant
variations in expected value of survival class within the observed
variations of each feature. Since the training steps followed feature
selection produced information about these interactions, we inde-
pendently selected survival class-associated features without consid-
ering the interactions among SNPs and expression signatures (Fig. 1b
and c).

In the statistical analysis for genotype selection, where nj=a

was the total number of samples in the membership function μ(si j=a,
δi j=a) that presented a class label for survival outcomes in the i-th
sample, with the alleles of the j-th locus being of the a-th genotype;
for example, AA, AB, and BB (Fig. 1b). Therefore, the expected value of
the survival class determined for the a-th genotype of the j-th locus
was:

Exp g j=a
� �

= ∑μ s j=a
i ; δ j=a

i

� �
=nj=a

: ð4Þ

Similarly, the expected value of the survivorship class for the h-th
expression label, for example, high and low values in the k-th gene,
was calculated as (Fig. 1c):

Exp ek=h
� �

= ∑μ sk=h
i ; δk=h

i

� �
=mk=h

; ð5Þ

where mk=h is the total number of samples for which ek is the h-th
expression label.

Application of the permutation approach [33] with these expected
values permitted identification of the features related to the
significant class label for survival time (p-valueb0.05). The Kolmo-
gorov–Smirnov (KS) test was used to determine the significance of
class label alterations by the symbolic labeling of features, such as
genotype differences at the j-th locus (p-valueb0.1).

5.3. Training and building of CORE-F

A model of genetic architecture was used to suggest our classifier
via CORE-F learning processes (Fig. 1d):

(1) The true class of survival outcomes was defined using the cut-
off parameter, C; μ(si, δi )≥C→1.
(2) The degree of transcriptional associations for the true class of
survival outcome was determined: Pr(μ(si, δi )≥C | ek=h).

(3) The genetic associations for the expression signatures were
determined: Pr(ek=h | g j=a).

Previously, the membership function graded the degree of
survivorship class in a continuous manner (0≤μ(si, δi )≤1).
Therefore, the cut-off parameter, C, dichotomized the class label into
true (poor-survival outcome) and false (good-survival outcome)
classes for the supervised learning of CORE-F (step 1). The trained
associations (steps 2 and 3) were introduced into the kernel function
of CORE-F as interaction terms.

The interactions between transcriptional activity and a given
genetic condition suggest the mechanism underlying the phenotype
variation [34]. To highlight the genetic architecture underlying gene
expression and survival outcome, a kernel function was designed to
present a high score with strong associations among the expression
signatures and the genetic variations. Therefore, the kernel function of
the CORE-F, σ(si), utilized the inverse of the associations among
genetic and transcriptional features as the denominator of the
transcriptional associations for the true class: Pr(μ(si, δi )≥C | ek=h).
The equation for the kernel function was calculated as (Fig. 1e):

if Pr eki jg j
i

� �
N 0; σ sið Þ = 1

p�q � ∑
q

k=1
∑
p

j=1

Pr μ si; δið Þ N= C jeki
� �

Pr eki jgji
� �−1

0
B@

1
CA
ð6Þ

where 1≤k≤q for eik, 1≤ j≤p for gi
j and 0≤C≤1 indicates the cut-off

parameter for the true class of survival class label μ(si, δi).
The kernel function σ(si) predicted the score of the true class

(poor-survival outcomes) using the given genotypes (g i
j) and

expression signatures (eik) in the i-th sample (si). In the kernel
function, the collected score was divided by the total number of
feature combinations (p*q) to prevent a false-positive classification
due to a large number of features.

With kernel function derived values, the predicted class label for
the i-th sample (s^i) was determined by the decision parameter θ
(0≤θ≤1) as:

sî = if σ Sið Þ ≤ θ;0
else;1 :

�
ð7Þ

The values of the parameters C and θ were tested and recursively
introduced over a set of values bounded by 0 and 1 and separated by
intervals of 0.01.

5.4. Data set

We selected 99 tissue samples from ovarian cancer patients that
had been enrolled in the TCGA (The Cancer Genome Atlas, http://
www.cancergenome.nih.gov/). All samples were from Caucasian
patients who underwent homogeneous treatment (Table 3). These
samples adequately represented the range of survival outcomes
without stratification by therapeutic trial or ethnic background (p-
valueN0.05). Overall patient survival was estimated from the date of
diagnosis to the date of death or latest follow-up.

Tumor materials in the TCGA project were excised prior to
administration of anticancer treatment, and genomic DNA and RNA
were extracted as described by the Biospecimen Core Resource (BCR),
a component of the TCGA. WG-SNP6.0 was used to detect genetic
variations (SNPs) and HG-U133 (Affymetrix, Inc., USA) was used to
measure gene expression levels. Expression signatures and SNPs were
profiles according to the guidelines of the platform manufacture
(Affymetrix, Inc., USA).

http://www.cancergenome.nih.gov/
http://www.cancergenome.nih.gov/
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5.5. Construction of classifiers for the ensemble tree method to validate
CORE-F

To validate the CORE-F algorithm, we compared its performance
with that of the recently developed ensemble tree method [14].
Because the key feature of CORE-consists of the “feature interactions in
the model of genetic architecture,” the ensemble tree method was
trained without assuming a genetic architecture involving genetic
associations that influence gene expression. Both the ensemble tree and
the CORE-F routines predicted the class labels for survival (μ(si, δi )) to
determine the power of the CORE-F method in the absence of class
labeling effects. The sensitivity and specificity of the ensemble tree
were measured using the cut-off parameter (0≤C’≤1) of the true class
(poor outcome), with the predicted class by the ensemble tree
beingNC’→1.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.ygeno.2011.03.005.
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