
      

      

      

   Int. J. Data Mining and Bioinformatics, Vol. 5, No. 2, 2011 131    

   Copyright © 2011 Inderscience Enterprises Ltd.    

      

      

      

Predicting disease phenotypes based  
on the molecular networks with
Condition-Responsive Correlation 

Sejoon Lee 
Department of Bio and Brain Engineering, 
KAIST, Daejeon, Republic of Korea 
E-mail: sejoon@biosoft.kaist.ac.kr 

Eunjung Lee 
Department of Medicine, 
Brigham and Women’s Hospital, 
Harvard Medical School, 
Boston, MA 02115, USA 
E-mail: ejalice.lee@gmail.com 

Kwang H. Lee* and Doheon Lee* 
Department of Bio and Brain Engineering, 
KAIST, Daejeon, Republic of Korea 
E-mail: khlee@biosoft.kaist.ac.kr 
E-mail: dhlee@biosoft.kaist.ac.kr 
*Corresponding authors 

Abstract: Network-based methods using molecular interaction networks 
integrated with gene expression profiles have been proposed to solve  
problems, which arose from smaller number of samples compared with the 
large number of predictors. However, previous network-based methods, which 
have focused only on expression levels of proteins, nodes in the network 
through the identification of condition-responsive interactions. We propose a 
novel network-based classification, which focuses on both nodes with 
discriminative expression levels and edges with Condition-Responsive 
Correlations (CRCs) across two phenotypes. We found that modules with 
condition-responsive interactions provide candidate molecular models for 
diseases and show improved performances compared conventional gene-centric 
classification methods. 
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1 Introduction 

Genome-wide expression profiles of diseased samples have been exploited to predict 
various disease states (Alizadeh et al., 2000; Golub et al., 1999; Ramaswamy et al., 2003; 
Wang et al., 2005). Golub et al. (1999) suggested a formalised strategy for discovering 
and predicting cancer classes based on gene expression monitoring. Alizadeh et al. (2000) 
showed that genome-wide expression-profiles-based molecular classification of tumours 
can identify undetected and clinically significant subtypes of cancers. In recent years, 
studies have addressed the question of classification problem about metastasis of cancer 
based on relatively large number of genome-wide expression profiles. Ramaswamy et al. 
(2003) found 17 gene signatures associated with metastasis, and Wang et al. (2005) 
identified a set of 70 gene markers for breast cancer metastasis using 286 gene expression 
profiles. However, the fact that typical microarray expression profiles have large number 
of predictors, i.e., expression measurements of tens of thousands of genes, compared with 
relatively small number (at most a few hundreds) of samples makes it difficult to obtain 
satisfactory accuracies in some classification problems especially related with complex 
diseases such as cancer. To address this challenge, extracting smaller number of 
predictors, called marker genes, by measuring the discriminative powers of individual 
predictors across two phenotypes has been widely incorporated in the classification 
procedure (Antoniadis et al., 2003). 



      

      

      

   Predicting disease phenotypes based on the molecular networks 133    

      

      

      

      

Yet, another challenge of expression-based classification arose from weak signals  
of individual predictors due to cellular heterogeneity within tumour tissues and genetic 
heterogeneity across patients. Distinct subtypes of cancers have distinct gene expression 
patterns, and individual samples have different aberration components even in the  
same pathways (Wood et al., 2007). These genetic heterogeneities of tumours are more 
likely to be the basis not only for wide variations in tumour behaviours and 
responsiveness to therapies, but also for the weak signals of individual genes in their 
mRNA levels. To cope with this heterogeneity, it has been proposed to combine  
the expression measurements for genes in the same functional modules extracted  
from Gene Ontology (GO), curated pathways, or protein–protein interaction networks, 
and use the combined activity levels of the modules as more informative predictors for 
disease classification (Chuang et al., 2007; Guo et al., 2005; Lee et al., 2008). Guo et al. 
(2005) suggested a method using a simple mean or median expression level of all 
member genes in each pathway based on GO. However, this method did not show 
significant improvement over the individual gene-based approach. This might be  
due to added noise from genes non-responsive in mRNA level in the pathways extracted 
from GO. 

Chuang et al. (2007) proposed a network-based classification of breast cancer 
metastasis, which not only improved prediction accuracy and reproducibility, but also 
provided a novel hypothesis of underlying mechanism. The method extracted 
subnetworks from protein interaction networks by integrating with functional expression 
profiles of breast cancer patients. While Chuang et al. (2007) only focused on expression 
levels of proteins, which are nodes in the networks, other groups focused on edges  
in the networks to capture interactions, which occur responsively to conditions of interest 
(Guo et al., 2007; Mani et al., 2008). However, these edge-based approaches have not yet 
been applied for the classification to our knowledge. 

Here, we propose a novel network-based classification strategy, which focuses  
on both condition-responsive proteins (nodes) and interactions (edges) in the network  
to extract functional modules. The interactions between each pair of two proteins  
are screened to have CRCs in their expression levels across two phenotypes, and the 
activity level of the module is inferred from a subset of member genes in the module 
whose combined expression levels deliver the maximal discriminative power.  
The proposed method has successfully identified subnetworks altered in a specific 
phenotype in terms of interactions suggesting candidate pathogenic processes, and their 
activities inferred from a subset of member genes serve as better predictors in 
classification compared with the conventional gene-centric procedures. 

This paper is organised as follows: In Section 2, we describe our five data sets  
related to diseases and the proposed method in detail, and how to evaluate the 
performance using Area Under ROC Curve (AUC). In Section 3, we explain CTC 
modules in five data sets, and interpret modules in the case of prostate cancer and  
breast cancer metastasis profiles. Finally, we estimate the classification performance by 
comparing with the conventional gene-based approach. In Section 5, we conclude with 
summary of our work. 



      

      

      

   134 S. Lee et al.    

      

      

      

      

2 Data sets and method 

2.1 Human interaction networks 

We constructed a protein–protein and protein–DNA interaction network, which consists 
of 57235 interactions among 11203 proteins curated from public databases including 
HPRD, BIND and REACTOME (Bader et al., 2001; Peri et al., 2004; Vastrik et al., 
2007), and several literatures (Ramani et al., 2005; Rual et al., 2005; Stelzl et al., 2005), 
and 1538 interactions among 333 transcription factors and 556 target genes extracted 
from Transfac database (Knuppel et al., 1994). 

2.2 Gene expression profiles 

We obtained five previously published mRNA expression datasets, which were divided 
into two populations of distinct phenotypes as per the original publications as shown  
in Table 1. The expression profiles were downloaded from NCBI GEO microarray 
repository or authors’ websites. 

Table 1 The five data sets used in method evaluation  

Study Phenotypes and samples 
Brain cancer (Nutt et al., 2003) 14 classic glioblastoma vs. 7 anaplastic 

oligodendrogliomas
Prostate cancer (Singh et al., 2002) 50 normal prostate samples vs. 52 prostate tumour 

samples 
Leukaemia (Yeoh et al., 2002) 79 TEL-AML1 leukaemia samples vs. 64 leukaemia 

samples with HH (hyperdiploid hyperdip) > 50 
Lung cancer prognosis 
(Bhattacharjee et al., 2001) 

31 primary lung tumours with poor prognosis  
vs. 31 primary lung tumours with good prognosis 

Breast cancer metastasis  
(Wang et al., 2005) 

106 metastatic primary breast tumours vs.  
180 non-metastatic primary breast tumours 

2.3 Extracting molecular Modules with Condition Responsive Correlations 
(MCRCs)

To extract molecular Modules with Condition-Responsive Correlations (MCRCs) in a 
specific phenotype of our interest, we first overlaid the expression levels of each gene 
onto its corresponding protein in the network as shown in Figure 1. For each interaction, 
edge in the network, the Pearson correlation coefficient for gene expression levels of two 
interacting proteins was calculated using all samples (Corr_All), and also using samples 
of a background phenotype (Corr_BG). The degree of CRC for each edge was defined  
by the magnitude of difference between Corr_All and Corr_BG as proposed by Mani  
et al. (2008). MCRCs were defined as a set of remaining connected components after 
removing edges with CRC values lower than a specific threshold. In this work, we used 
the statistical significance of CRC score (p value) less than 0.001 or 0.0025 as a CRC  
cut-off, and removed edges with CRC p value larger than a p value threshold. The p value 
of a CRC score was calculated by indexing the score on the null distribution of CRC 
scores from all the edges in the network. 
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Figure 1 Schematic diagram for extracting CRC molecular modules with Condition-Responsive 
Correlations (CRCs), and inferring their activities based on a subset of discriminative 
member genes (see online version for colours) 

2.4 Inferring module activities 

Given the identified set of MCRCs from the previous module extraction step, for each 
MCRC, we applied a greedy search similar to the method proposed by Lee et al. (2008) 
to identify a subset of member genes in the module whose combined expression levels 
deliver maximal discriminative power across two phenotypes. Because the original 
method by Lee et al. (2008) was invented for a set of genes, pathways, we modified it to 
consider network connectivity. 

For each MCRC, we chose a protein with the highest discriminative power in its gene 
expression levels as a starting node of greedy expansion. In the next step, the search 
considers the addition of a protein from the neighbours of the starting node. An addition 
that yields the increase in discriminative score of inferred module activity (Mi in  
Figure 1) is adopted. This step iterates until any neighbour protein of already selected 
proteins cannot increase the discriminative score of module activity. 
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Finally, we produced a matrix of module activity levels across patients, which was 
utilised to build a classifier. In this study, we used the t-score to measure the 
discriminative power between two different phenotypes. 

2.5 Classification evaluation 

Naïve Bayesian classifier (Bishop, 1995) was trained on both the activity matrix of 
MCRCs and the original gene expression matrix for comparison. The Naïve Bayesian 
classifier technique is based on the Bayesian theorem and is particularly suited when the 
dimensionality of the inputs is high. The assumption of the Naïve Bayesian classifier is 
that every feature should be independent. The advantage of using simple Naïve Bayesian 
classification technique is that we do not need to suffer from optimising classification 
parameters since our goal is comparing two different types of feature sets (module 
activities vs. gene expressions). To get the unbiased classification performance from the 
data with small number of samples, we applied the Leave One Out Cross Validation 
(LOOCV) scheme, and reported the averaged AUC on test samples as a final 
classification performance. We strictly utilised only training samples in the steps of 
MCRC extraction, and module activity inference to avoid the inflow of any information 
from a test sample including the class label. 

Instead of using all the features of either module activities or individual gene 
expressions together in classification, we built classifiers using varying number of 
features by sequentially adding one by one in decreasing order of their discriminative 
power. Gene-based classifiers, for comparison, used the matched number of top 
discriminative genes to the number of unique genes included in modules to keep the same 
amount of information content to be used. 

3 Results and discussion 

3.1 MCRC from five data sets 

Table 2 shows the number of extracted MCRCs and the number of unique genes included 
in those modules under the given CRC p value cut-off for five data sets. Through the 
integration of a molecular network and expression profiles, the greatly reduced number  
of features was extracted from the original gene expression matrix. For example,  
28 activity features of modules composed of 66 different genes were extracted from  
8478 individual gene expression features in brain cancer profiles. 

Table 2 Condition-responsive correlated modules from five data sets 

Dataset #Modules # Genes CRC cut-off (p value)
Brain cancer 28 66 0.001 
Prostate cancer 19/30 57/116 0.001/0.0025 
Leukaemia 17 42 0.001 
Lung cancer 16 53 0.001 
Breast cancer 34 84 0.001 
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3.2 MCRC associated with prostate cancer 

Many of 30 identified modules with CRC p < 0.0025 from the prostate cancer dataset 
were enriched for proteins functioning in a common pathway (using a hypergeometric 
test on Biological Process annotation from the GO database) while 19 modules of CRC 
p < 0.001 were not. It might be because important oncogenic processes with altered 
interactions in prostate cancer might not be captured under the strict CRC cut-off 
p < 0.001. Figure 2 shows some of the modules enriched with important functions such as 
cell proliferation, apoptosis and cell adhesion associated with tumorigenesis. Many of 
known prostate cancer causing genes such as MYC, RB1, NME1 in cell proliferation, 
BRCA1 in cell cycle control, BIRC3 and SOX9 in apoptosis and CD44 in cell adhesion 
module were identified (Li et al., 2003). Mutations in NME1, RB1, BRCA1, and 
amplification of MYC gene are known to cause prostate cancer (Li et al., 2003),  
and SOX9 is known to function both in the development and the maintenance of normal 
prostate, and indicated for the contribution to tumour growth and invasion (Wang  
et al., 2008). 

Figure 2 Modules with Condition-Responsive Correlation from prostate cancer dataset. Known 
prostate cancer-related genes are marked by an asterisk (see online version for colours) 

3.3 MCRC associated with breast cancer metastasis 

A total of 34 modules were identified from the gene expression profiles of metastasis vs. 
non-metastatic lymphnode-negative primary breast tumour samples. Proteins functioning 
in the biological processes associated with tumour invasion and metastasis such as 
apoptosis, chemotaxis, cell adhesion and cell motility were enriched in the modules 
(Figure 3) (Yu et al., 2007). Especially aberrations in cell adhesion molecules such  
as FN1 (fibronectin) and LAMC2 were associated with metastasis and invasion  
(Sisci et al., 2004; Yuen et al., 2005). While the conventional gene expression analysis, 
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which focuses on discriminative genes, cannot capture LAMC2 due to its minor change 
in expression level, our approach identified it because the correlation between LAMC2 
and COL7A1 was different in metastatic and non-metastatic tumours. 

Figure 3 Modules with Condition-Responsive Correlation associated with breast cancer 
metastasis (see online version for colours) 

3.4 Classification performance 

We evaluated the classification performance of our MCRC method, and the conventional 
gene-based method in five data sets. As shown in Figure 4, classification based on 
activities of MCRC modules outperformed the conventional individual gene-based 
method significantly in brain cancer, prostate cancer and lung cancer (p = 0.002, 0.03 and 
0.048, respectively), and showed comparable performance in leukaemia, and breast 
cancer metastasis. The p value was calculated using Wilcoxon signed rank test of two 
sequences of AUCs from the left-hand start to the dotted vertical line from both methods. 
The vertical line represents the maximum value from the number of genes used to 
generate a best AUC using each method. For example, in the brain cancer, MCRC 
showed the best AUC using modules consisting of 13 genes, and the gene-based methods 
using 25 genes. In this case, we compared the AUCs using 1–25 genes to get p value. 

While MCRC with p < 0.0025, in prostate cancer classification, showed better 
performance than genes, MCRC with p < 0.001 showed only comparable result 
(M = 0.87, G = 0.88, p = 0.63). Also as shown in the previous GO enrichment analysis, 
MCRCs with p < 0.0025 were significantly enriched with biological processes associated 
with cancer progression while MCRC with p < 0.001 were not. This implies that a 
systematic way to decide CRC cut-off, which enables the identification of more 
biologically meaningful MCRCs, needs to be developed as a further work. 
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Figure 4 Classification performance of MCRC and the conventional method. The maximum 
AUC using each method, and the p value through Wilcoxon signed rank test to measure 
the significance of difference in AUCs up to the dotted vertical line from both methods 
were denoted next to the name of data set. The vertical line denotes the maximum  
value from the number of genes used to generate a best AUC using each method  
(see online version for colours) 

5 Conclusion 

This paper has proposed a novel network-based classification approach, which focuses on 
both condition-responsive proteins (nodes), and interactions (edges) in the network to 
extract condition-responsive functional modules. The interactions between each pair  
of two proteins are screened to have CRCs in their expression levels across two 
phenotypes, and then the activity level of a module is inferred from a subset of member 
genes in the module whose combined expression levels deliver the maximal 
discriminative power. Finally, we estimate the classification performance by comparing 
with gene-based conventional approach using Naive Bayesian classifier. 

We have demonstrated that exploiting both condition-responsive interactions and 
discriminative genes in the molecular network can identify novel functional modules 
associated with key pathogenic processes, and improve classification performance. 
Condition-responsive interactions with gain or loss of correlation in cancer samples can 
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especially provide clues for identifying oncogenic aberrations. In addition, the improved 
performance in disease classification support that compressing the expression levels of 
multiple genes, which have closely correlated expression due to their roles in the same 
biological processes into an activity level effectively reduces redundant signals into a 
better predictor. 
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