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Abstract

Background: Cells coordinate their metabolism, proliferation, and cellular communication according to
environmental cues through signal transduction. Because signal transduction has a primary role in cellular
processes, many experimental techniques and approaches have emerged to discover the molecular components
and dynamics that are dependent on cellular contexts. However, omics approaches based on genome-wide
expression analysis data comparing one differing condition (e.g. complex disease patients and normal subjects) did
not investigate the dynamics and inter-pathway cross-communication that are dependent on cellular contexts.
Therefore, we introduce a new computational omics approach for discovering signal transduction pathways
regulated by transcription and transcriptional regulations between pathways in signaling networks that are
dependent on cellular contexts, especially focusing on a transcription-mediated mechanism of inter-pathway cross-
communication.

Results: Applied to dendritic cells treated with lipopolysaccharide, our analysis well depicted how dendritic cells
respond to the treatment through transcriptional regulations between signal transduction pathways in dendritic
cell maturation and T cell activation.

Conclusions: Our new approach helps to understand the underlying biological phenomenon of expression data
(e.g. complex diseases such as cancer) by providing a graphical network which shows transcriptional regulations
between signal transduction pathways. The software programs are available upon request.

Background
Signal transduction is the primary process by which cells
coordinate their metabolism, proliferation, and cellular
communication according to environmental signals such
as hormones, nutrients, and other chemical stimuli.
Cells sense environmental signals by receptor proteins
which convert the signals into various responses
through signal transduction that are dependent on cellu-
lar contexts such as signals, receptor proteins that cells
possess, and intracellular machinery by which cells inte-
grate and interpret the signals [1]. For example, the
JAK-STAT signal transduction pathway, which provides
one of the most direct routes from cell-surface receptors
to a nucleus, is activated by more than 30 cytokines of
soluble mediators in cell communication. The cellular
responses are different according to their cytokines even

though they are stimulated by the same JAK-STAT sig-
nal transduction pathway [1].
As well as for various responses stimulated by signal

transduction pathways or signaling pathways, recent arti-
cles have presented abundant evidence for inter-pathway
cross-communication according to cellular contexts [2-4].
Cytokine signaling which is critical in immune system
regulates functions of other signaling pathways either by
transcription-mediated consequences of cytokine signal-
ing or by transcription-independent mechanisms [2]. As
an example of transcription-mediated mechanisms, inter-
feron gamma activates signal transduction pathways of
toll-like receptors (TLRs) by inducing expression of TLRs
[5]. An example of transcription-independent mechan-
isms, Bezbradica and Medzhitove [2] suggested that lat-
eral interactions between cytokine receptors and other
cellular receptors may explain how different cells induce
their cell-type specific responses with a highly limited set
of janus kinase (JAK) and signal transducer and activator
of transcription (STAT) signaling proteins.
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Among the two mechanisms of cross-communication
between signaling pathways according to cellular con-
texts, we focus on the transcription-mediated mechan-
ism that can be inferred by integrating omics data as
well as genome-wide expression data. Various methods
analyzing expression data by integrating omics data have
been employed to infer sub-networks perturbed at cellu-
lar context with protein-protein interaction (PPI) data
[6-10]. Ideker et al. [8] first proposed to identify sub-
networks by devising an adequate scoring function on
PPI networks based on the significant changes in gene
expression. By adapting the scoring concept, many simi-
lar approaches have improved the search algorithms
[10] or scoring functions [6,9]. However, previous
approaches that inferred sub-networks did not provide
transcription-mediated communication between signal-
ing pathways, because they could not identify signaling
pathways regulated by transcription at cellular contexts
and PPI data have the noise problem [11].
Therefore, we propose a new computational omics

approach for discovering signaling pathways regulated by
transcription, Transcription-Regulating Signaling Path-
ways (TRS Pathways) and transcriptional regulations
between pathways in Transcription-Regulating Signaling
Networks (TRS Networks) that are dependent on cellular
contexts. In this approach, cellular contexts are restricted
to the experimental condition of expression data. TRS
Pathways are signaling pathways of which some proteins
are regulated by transcription according to the context of
expression data. Signaling pathways are chains of proteins
relaying a signal from ligands or transmembrane proteins
to transcription factors, or some proteins whose roles are
clearly known such as caspase3 [1,12]. Proteins regulated
by transcription represent the mRNA expression levels of
proteins at the context which are significantly changed.
TRS Networks are sub-networks which result from tran-
scriptional relation between TRS Pathways. Applied to
dendritic cells treated with lipopolysaccharide, we found
several biological facts and transcriptional regulations as
examples of inter-pathway cross-communication, related
to dendritic cell maturation and T cell activation.

Methods
Our system comprises three major steps: (1) constructing
a human omics network from PPIs and Protein-DNA
(PD) interactions; (2) identifying TRS Pathways by two
strategies: three constraints to reduce the search space
for TRS Pathways and designing a scoring function for
TRS Pathways; (3) identifying the TRS Networks by a
search algorithm. After explaining these three major steps
of the system, we briefly explain the scoring function for
TRS Networks, designed to compare with sub-networks
inferred by previous methods, expression data analyses
and kinase reaction annotations.

Constructing a human omics network
A human omics network is a directed graph comprising
Protein-Protein Interactions (PPIs) and Protein-DNA
(PD) interactions. The interactions were collected from
three types of data: PPI, PD, and KEGG database. Firstly,
PPI data were from four public databases; BioGRID ver-
sion 2.0.26 [13], IntAct [14], HPRD Release 7 [15], and
MINT [16]. Secondly, the PD interaction data were from
three public data; the results of ORFeome-based analysis
[17], bZIPDB [18], and MSigDB [19]. Thirdly, we added
the PPI and PD interaction data of KEGG [20] into the
above integrated PPI and PD data, because they missed
many signaling PPI interactions in the KEGG database
(Figure S1). Even though adding KEGG interactions into
the omics network can cause a circularity problem of the
results, we proved that it is a useful and necessary
method to find new pathways that do not exist in KEGG
pathways from searching the omics network (Figure 1).
These interaction data, collected from the eight databases,
were integrated based on the Entrez gene information at
NCBI providing abundant external references to other
databases [21]. The integrated omics network comprises
10,960 nodes and 113,220 edges. Since PPI interactions
from four public PPI database have no directional infor-
mation, one PPI was transformed into two PPIs having
opposite directions.

The two strategies for identifying TRS Pathways
Because finding the highest-scoring connected sub-
networks like TRS Pathways in the entire interaction
network is a NP-hard problem [8], we adopted two stra-
tegies. The first strategy is to reduce the search space
for TRS Pathways by three constraints. The second is to
find the pathways only with top scores by defining the
scoring function for a TRS Pathway.

The first strategy for identifying TRS Pathways: three
constraints to reduce the search space for TRS Pathways
The first strategy for identifying TRS Pathways is to
reduce the search space of the entire network for TRS
Pathways by three constraints. The three constraints are
based on three previous approaches mining candidate sig-
naling pathways from PPI data, given a pair of starting and
ending proteins [12,22,23]. Firstly, we search for TRS
Pathways relaying a signal from 1,728 start proteins to 479
end proteins. According to the definition of signaling
pathways by which cells convert extracellular signals into
cellular responses [1], start proteins are defined as ligand
or transmembrane proteins; end proteins as transcription
factor proteins or some proteins whose roles are clearly
known in cells. 1,728 Start proteins and 479 end proteins
were found by searching three databases: 1,310 trans-
membrane proteins as start proteins from the Locate data-
base [24]; 236 transcription factors as end proteins from
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the PD interaction data; 418 start (e.g. ligand proteins) and
243 end proteins (roles are clearly known in cells, e.g. cas-
pase8) from the KEGG database [20]. These 243 end pro-
teins are terminal nodes of KEGG signaling pathways
linked to other signaling pathways or biological processes
such as apoptosis.
Secondly, because signals are transmitted from an extra-

cellular region into a nucleus, we defined the right orders
of pathways as the following: from an extracellular region
to a plasma membrane, from a plasma membrane to cyto-
plasm and from cytoplasm to a nucleus. When we search
for TRS Pathways, we remove edges whose directions are
opposite to the right orders such as from a plasma mem-
brane to an extracellular region. Removing the opposite
edges can lead to the loss of some feedback regulation
processes between PPIs, but is an indispensible step to

make the complex PPI data into a simple signaling path-
way model to deal with. Moreover, since we can identify
the transcriptional feedback regulation processes from the
PD interaction data, the processes can compensate the
loss defect. The sub-cellular localization data were from
Locate database [24]. Lastly, we search for TRS Pathways
whose path lengths are less than or equal to 10, since the
path lengths of all signaling paths in the KEGG database
[20] are distributed from 1 to 10 (Figure S2). We search
the KEGG database for all signaling paths with the found
start and end proteins, then count their path lengths.

The second strategy for identifying TRS Pathways: the
scoring function and search algorithm
The other strategy is to find the pathways only with the
top scores by defining the scoring function for a TRS

Figure 1 TRS Pathways relaying of a signal from TNF to NFKB. Each node represents a protein whose name follows the gene name. The
color indicates its expression levels (fold change): red (≥ 3), orange (≥ 2 and < 3), yellow (≥ 1 and < 2), light yellow (≥ 0.5 and <1), white (>
-0.5 and < 0.5), light cyan (> -1 and ≤ -0.5), cyan (> -2 and ≤ -1) and navy blue (> -3 and ≤ -2) and blue (≤ -3). The small UB and P circles
represent ubiquitins and phosphates. (A) One of the known pathways from TNF to NFKB [35]. (B) In the KEGG TRS Pathway relaying a signal
from TNF to NFKB, MAP3K1 (mekk1) is used as IKB kinase kinase (IKKK). (C) The omics network TRS Pathway seems to select each protein from its
corresponding protein complex of (A) to make a linear path. The expression condition is 2h after the LPS treatment.
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Pathway. Let N and E represent a set of nodes and edges
of a TRS Pathway respectively. The scoring function
P(N,E) is the sum of the two functions T(N) and R(E);

P T R( , ) ( ) ( ).N E N E= + (1)

T(N) measures how many nodes in a TRS Pathway are
regulated by transcription. This measure is based on the
method of Ideker et al. [8].

T Z Z S( ) ( ).N Nstart end= + + (2)

Zstart and Zend represent the Z score values of the start
and end nodes of a TRS Pathway. Z score Zi = F-1(1-pi)
is converted from the p value pi of a gene i to a signifi-
cance level, where F-1is the inverse normal cumulative
density function. The pi value is acquired from the
results of the expression data analysis.
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We sum the Zi over all |N| genes in a TRS Pathway to
produce an aggregate Z score (ZN) for a TRS Pathway.
Then, in order to properly capture the connection
between expression and network topology, we investi-
gate whether the score ZN of a TRS Pathway in Eq. (3)
is higher than expected relative to a random set of
genes. We randomly take 100,000 samples from all gene
sets of size k using a Monte Carlo approach and calcu-
late their scores ZN. The mean μk and standard devia-
tion (SD) sk for each k are estimated and the noise in
the estimates is reduced using a sliding window average.
Using these estimates, the corrected score S(N) is calcu-
lated. The corrected score of random TRS Pathways is
guaranteed to have a mean of μ = 0 and SD s = 1.
R(E) estimates how reliable PPIs in a TRS Pathway

are. Estimating the PPI reliability R(E) of a TRS Path-
way is absolutely necessary to indentify the signaling
pathways consisting of PPIs [12], because the PPI data
are noisy [11]. In this study, we adopt Bebek and
Yang’s method based on a logistic regression model
[25]. The model represents the probability of a true
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as a function of four observed random variables

X X Xi i i( ) ( ) ( )( ,..., )= 1 4 on a pair of proteins: (1) the

observed number of papers in which the interaction
between two proteins was observed, (2) the Pearson
correlation coefficient of expression measurements of
the corresponding genes, (3) the proteins’ small world
clustering coefficient [26], and (4) the binary (0/1)

protein subcellular localization data of interacting pro-
teins [27]. When interacting proteins co-localize in the
same subcellular location, we give 1 to the interacting
protein pair.
Given positive and negative training data sets, one can

optimize the parameters (b0,..., b4) to maximize the like-
lihood of the data. To optimize the parameters, we use
the lrm function of the Design R package. We randomly
select 5,000 PPIs from 12,363 determined by coimmu-
noprecipitation as our positive training data set [28]. For
the negative training data set, we also randomly select
5,000 PPIs that are not in the interactions. Firstly, we
selected 1,000 PPIs for each positive and negative train-
ing data as carried out by Bebek and Yang [12]. How-
ever, since the number of the entire PPIs was higher
than that of Bebek and Yang, we had to increase the
training data set to 5,000 PPIs. We repeat these experi-
ments 1,000 times and estimate the mean reliability of
each PPI. To calculate a reliability score R(E) of a TRS
Pathway, we take the same procedure of estimating the
corrected expression score S(N) from the ZN scores of a
TRS Pathway. For an edge of TRS Pathways, we did not
use PPIs which reliability scores were less than 0.6
(about 85 quantile) (Figure S3).
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To search for the top path score TRS Pathways, we
used Dijkstra’s algorithm [29]. Although we reduce the
search space for TRS Pathways by three constraints, it is
still impossible to search for all possible TRS Pathways
in a few days. Also, we do not have to find them all.
However, other alternative pathways of the same start
and end nodes may also be important, just as the high-
est-scoring path in cell biology. Therefore, we slightly
modified Dijkstra’s algorithm, which searches for only
the smallest-scoring path, to identify TRS Pathways with
several top path scores. The statistical significance of
TRS Pathways is measured by randomly permutating
the expression of individual genes and performing the
same search for TRS Pathways 1,000 times.

Identification of TRS Networks by a search algorithm
The following is the pseudo code of a search algorithm
for a TRS Network. Input: an entire omics network G,
all TRS Pathways relevant to the context, and a start
gene. If the start gene is not given, the start gene is
determined as the start node of the highest scoring TRS
Pathway.
Output: a sub-network Gp of G

(1) Initialize Gp by the top ranked TRS Pathway
whose start node is the start gene
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(2) Add the end node of the initial TRS Pathway
into Queue;
(3) WHILE end nodes exist in Queue
(4) POLL an end node e,
(5) FOR i = 1 to n of outgoing edges of e;
(6) IF a target node ti of ei is a DEG (Differentially
Expressed Gene) or exists in Gp, add ti and ei into Gp;
(7) IF added ti is a start node, a DEG, and posi-
tively regulated, add the top ranked TRS Pathways
of ti into Gp and add the end node of the top ranked
TRS Pathways into Queue;
(8) IF added ti is an end and DEG, add ti into
Queue;
(9) Output Gp and its score.

The above search algorithm represents the following;
by the top ranked TRS Pathway, the signal is trans-
mitted into the end nodes. The activated end nodes
carry out their own roles in cells; transcription feedback
regulation, enzyme activity or inducing the expression of
new start proteins. The newly activated start proteins
can send signals to other end nodes, thus we added the
TRS Pathways activated by start proteins of a positively
regulated DEG into the TRS Network. Since there are
so many TRS Pathways at context, we have to select
only the highly significant TRS Pathways for adding a
TRS Network. The newly added end nodes also carry
out their own roles in cells. Therefore, we repeat this
process until there is no protein in the Queue.

The scoring function for TRS Networks for sub-network
comparison

The scoring function for a TRS Network SF( , )  com-

prises three parts: how much its nodes are differentially

expressed S ( ) , how many significant TRS Pathways

P( , )  it includes, and how many edges |  | it has

S S P( , ) ln ( ) ln ( , ) ln | |,     = + − (5)

S 
Z

Z Z  Z( )
( )

;
| |

; ( ),| |

| |




 


 

=
−

= = −
∈

−∑…


1

11
ii i ipΦ (6)

P P  P T R( , ) ; ( , ) ( ) ( ),  =
=

= = +∑ i
i

n

i i i i iP N E N E
1

(7)

here  = = = =U Ui
n

i i
n

iN E0 0, .

In order to calculate S( ) , we use the same function

for the expression score of a TRS Pathway (See Eq. (3)).
Pi is the score value (See Eq. (1)) of the ith TRS Pathway
in a TRS Network. Ni and Ei also represent nodes and
edges of ith TRS Pathway. N0 and E0 represent a set of

nodes and a set of edges which do not belong to any
TRS Pathway, respectively. They have a role to inter-
connect TRS Pathways. To assess the statistical signifi-
cance of TRS Networks, we take the same procedure in
estimating the TRS Pathways by randomly permutating
the expression of individual genes and performing the
same search for TRS Networks 1,000 times.

Expression data analysis
We investigated dendritic cells treated with lipopolysac-
charide (LPS), one of the TLR agonists. TLRs are very
important innate receptors that sense microbial pro-
ducts and trigger dendritic cell maturation and cytokine
production, effectively bridging innate and adaptive
immunity [30]. We downloaded GSE2706 data from the
GEO database [31] and analyzed the data with limma
[32]. The limma results were used in three different
ways. Firstly, we used the probability values (p values) of
genes for the scoring function. Secondly, we selected
genes for which the probability value was p < 0.05 as
differential expressed genes for the identification of TRS
Networks by a search algorithm. When we compared
the performance of the TRS Network identification
according to several DEG cut-off p values, p < 0.05 was
one of the best performances (Figure S4). Lastly, we
used fold changes of gene expression for the color of
protein nodes in the networks.

Kinase reaction annotation
Since phosphorylation is one of the most important and
critical processes in the signal transduction pathway, we
annotate TRS Networks with the relationships between
kinases and their substrates [33,34]. We believe that the
kinase reaction annotation makes the TRS Networks
more reliable and more meaningful for a biological
understanding.

Results
TRS Pathways found by searching KEGG pathways and
the human omics network
To find which signaling paths are regulated by tran-
scription in our known knowledge, we searched the
KEGG pathways [20] for TRS Pathways in dendritic
cells 2h after the LPS treatment. The top TRS Pathways
can be ranked by the two scores: the expression score
and the path score (Additional file 1: Table S1). The
expression score is an aggregated expression score S(N)
(Eq. (3)) and the path score is our own path scoring
function (Eq. (1)). Among all in the expression score,
the path from TNF to MAPK12 (p38) was the highest-
scoring and among all in the path score, the path from
TNF to NFKB1 (p50) was the highest-scoring.
From the viewpoint of understanding the underlying

biological phenomena of cellular contexts, the path from
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TNF to NFKB1 found by our path scoring function is
more helpful, though it is difficult to determine which is
more significant than the other. Let us suppose that
intermediate signaling proteins exist to some extent in a
cell to quickly respond to an environmental signal.
Then, when the mRNA expression level of the start
node of a path increases, we expect that the signal start-
ing from the start node would be transmitted to the end
protein of the path. Likewise if the mRNA expression
level of the end node of a path increases, we also expect
that the biological process of the end node would occur.
In the path from TNF to NFKB, both the mRNA expres-
sion levels of the start node TNF and the end node
NFKB1 were increased. The signal starting from TNF
would be transmitted to NFKB1 and NFKB1 would acti-
vate the mRNA expression levels of its target genes as a
transcription factor. Therefore, we can identify more
explicable paths by using our path scoring function,
adding the expression scores of the start and end node
of a path (Zstart and Zend of Eq. (2)) into the aggregated
expression score, than by using just the aggregated
score.
A TRS Pathway from TNF to NFKB1 was the highest-

scoring when we searched the omics network with our
path scoring function (See Eq. (1) and Methods). We
compared it with the highest-scoring TRS Pathway of
KEGG, since both pathways have the same start and
end nodes (Figure 1). However, their intermediate nodes
were shown to be quite different. Unless we thought of
the actual biological system where a protein complex is
usually used rather than a single protein for sending a
signal, we could not recognize that the TRS Pathway of
the omics network is also correct. The TRS Pathway of
the omics network (Figure 1C) seems to be constructed
by selecting each protein from its corresponding protein
complex of Figure 1A to make a linear path.
The signaling pathway of Figure 1A has not been

included in KEGG pathways, but it was already known in
a paper [35]. This shows that our TRS Pathway method
suggests highly reliable TRS Pathway candidates by
searching the omics network. Moreover, we also con-
firmed that our analysis can search not only highly reli-
able but also significantly regulated TRS Pathways from
the omics network by assessing their significances quanti-
tatively (See Methods). The TRS Pathway score (13.635)
of the omics network (Figure 1C) was higher than that
(11.936) of KEGG (Figure 1B), and the TRS Pathway p
value (2.428e-4) of the omics network was lower than
that (1.476e-3) of KEGG (Additional file 1: Table S2).
The first pathway sending a signal from LPS to the

nuclear factor of kappa light polypeptide gene enhancer
in B-cells (NFKB) was unfortunately hardly regulated by
transcription. Not only was the path score low, but so
was its expression score that we could not identify this

pathway as a TRS Pathway. It was the correct result
because the first pathway was not a TRS Pathway but a
relevant signaling pathway in this context. These results
shows that our TRS Pathway analysis can search highly
reliable TRS Pathway candidates regulated by transcrip-
tion according to cellular contexts well, even though it
cannot guarantee to find all the relevant signaling path-
ways to the contexts. In our analysis, we fortunately
knew that TLR4 senses LPS as the start protein that
initiates all relevant signaling pathways. Therefore, we
could identify transcriptional regulations between the
first pathway and other signaling pathways in TRS Net-
works, though not when searching for TRS Pathways.

TRS Networks found by searching the omics network
We found that the TLR signaling pathway and Apopto-
sis are the most relevant and known pathways among
all the KEGG pathways 2h after the LPS treatment, by
Impact analysis [36]. Impact analysis is one of the best
methods ordering known pathways by estimating how
each pathway is over-represented in a specific context.
However, a major drawback to analyses using known
pathways is that the large number of genes are unin-
volved in pathways or have no functional classification
[37]. Even though we discovered the over-represented
pathways in the context of expression data, we could
not sometimes find out the new understanding of the
biological phenomenon. Therefore, these two pathways
are not the TRS Networks we wanted to discover but
the most relevant and known pathways in this context.
We used two pathways, the TLR signaling pathway

and Apoptosis, to prove that our TRS Network
approach finds more known nodes and edges than other
previous approaches. The larger the overlap of a net-
work with the two known pathways, the more known
nodes and edges the approach constructing the network
finds. To compare, two previous methods inferring sub-
networks from omics networks were used: a jActiveMo-
dule network and a D2D network. A D2D network is
constructed by linking DEGs with their corresponding
PPIs [7]. A jActiveModule network is inferred from the
omics network using Cytoscape [38]. The jActiveModule
analysis infers sub-networks perturbed at the condition
with thousands of PPI data by devising an adequate
scoring function on PPI networks based on the signifi-
cant changes of expression data [8]. The overlaps of two
TRS Networks (TLR4 TRS Network and TNF TRS Net-
work) were superior to those of other two networks: the
D2D network and the jActiveModule network (Figure 2
and Additional file 1: Table S3). It shows that our TRS
Network approach finds more known nodes and edges
than the previous approaches do.
The TLR4 TRS Network and TNF TRS Network were

named by the start node used to search for TRS
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Networks (See Methods). To estimate the performance of
our TRS Network analysis without knowing the start
node, we searched for the two TRS Networks and com-
pared their overlaps. In this context, TLR4 senses LPS as
the start protein. If, however, we did not know the start
protein, TNF, the start protein of the highest-scoring
TRS Pathway would be selected as the start node of the
search step. The TLR4 TRS Network was found by the
actual start node and the TNF TRS Network was found
by the inferred start node. The overall propensity of the
overlaps of two networks looked very similar, though the
performance by the actual start node was slightly better
than by the inferred start node (Figure 2 and Additional
file 1: Table S3). Therefore, this result shows that our
TRS Network analysis works quite well on searching for
TRS Networks without a known start protein.
By our TRS Network scoring function (Eq. (5)), we

ordered 70 KEGG signaling pathways and four sub-

networks: the TLR4 TRS Network, the TNF TRS Net-
work, the jActiveModule network, and the D2D Net-
work (Table 1). We compared the orders of KEGG
pathways by our scoring function to those by Impact
analysis. We obtained the same results in the top ranked
KEGG pathways. By both analyses, the TLR pathway
and Apoptosis were the most relevant to this context
and highly regulated by transcription. However, the net-
work scores (p values) of the two KEGG pathways were
much lower (more significant) than those of the two
TRS Networks. It shows that the two KEGG pathways
are not good TRS Networks, though they are the most
relevant to the context among the known pathways.
Among 70 KEGG pathways and the four sub-net-

works, the highest-scoring pathway or sub-network was
the TLR4 TRS Network (Table 1). It includes more sig-
nificant TRS Pathways (P ( , )  : 942.988) than the
TNF TRS Network (P ( , )  : 698.589) and the TLR

Table 1 The results of TRS Network analysis

Networks or pathways Network score (p value) S( ) P( , )  |ε|

TLR4 TRS Network 4.312 (<1.0e-03) 17.246 942.988 218

TNF TRS Network 4.046 (<1.0e-03) 17.509 698.589 214

TLR signaling pathway 2.078 (0.38) 5.173 32.789 213

Apoptosis 1.385 (0.83) 3.958 159.534 158

D2D network 0.118 (0.99) 29.244 32.089 834

jActiveModule network -0.194 (0.99) 41.025 19.484 970

The network scores are calculated by summing InS( ) , and InP( , )  and subtracting In|  | (See Eq. (5)). S( ) indicates how much its nodes are
differentially expressed. is calculated by summing the path scores of all TRS Pathways the network includes. P( , )  Sub-networks results are highlighted in
bold to be easily recognized from KEGG pathway results. P values are assessed by random permutation of the expression of individual genes. The expression
condition is 2h after the LPS treatment.

Figure 2 The overlap of four sub-networks with the TLR signaling pathway and Apoptosis. It shows the difference of the statistical
significance of the node overlap (A) and the edge overlap (B) between four sub-networks. The line color of each sub-network is following: the
TLR4 TRS Network (blue), the TNF TRS Network (red), the D2D network (green), and the jActiveModule network (purple). The overlaps of the two
TRS Networks are larger than those of other networks: the D2D network and the jActiveModule Network. P values are measured by Fisher exact
test [46] and are transformed by the negative natural logarithm. The condition is 2h after the LPS treatment.
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signaling pathway (P ( , )  : 32.789), though the num-
ber of its edges (|  |: 218) is similar to that of the TNF
TRS Network (|  |: 214) and to that of the TLR signal-
ing pathway (|  |: 213). This suggests that edges of the
TLR4 TRS Network have a higher probability in being
the components of significant TRS Pathways than those
of other networks. Thus, the TLR4 TRS Network is
more explicable and the edges may be more important.
The D2D network and jActiveModule network did not
obtain high network scores despite their high expression
scores (S ( ) : 41.025 and 29.244). The networks com-
prise many edges (|  |: 834 and 970) but do not
include a lot of TRS Pathways (P ( , )  : 19.484 and
32.089). This shows that most edges are not compo-
nents of TRS Pathways. The two sub-networks are inex-
plicable and do not provide many clues to understand
biological phenomenon of the context. Therefore, the
orders of the network scores (Table 1) shows that our
TRS Network analysis efficiently finds more TRS Path-
ways and TRS Networks than other approaches (includ-
ing canonical pathway analyses).

Discussion
TRS Network analysis shows how dendritic cells respond
to the LPS treatment
Dendritic cells sense the presence of LPS and are
matured by presenting LPS as an antigen-presenting cell
to initiate adaptive immune responses through T cell

activation [1]. Our TRS Network analysis found that
NFKB activated by the signal starting from LPS induces
biological process related to the maturation of dendritic
cells. We discovered four biological processes related to
dendritic cell maturation and among those processes,
two processes showed inter-pathway cross-communica-
tion of transcriptional regulations between signaling
pathways (Figure 3).
Firstly, NFKB has gotten a positive feedback by indu-

cing TNF, which in turn reinforces the activation of
NFKB (Figure 3A). When the dendritic cells are treated
with LPS, LPS activates TLR4 which recruits adaptor
proteins and sends a signal to NFKB to release NFKB
into the nucleus (a TLR4-NFKB pathway). NFKB in the
nucleus induces the transcription of genes that promote
immune and inflammatory responses [1]. TNF, one of
the target genes increased by NFKB, has the possibility
to activate NFKB as a positive feedback by sending a
signal to NFKB through a TNF-NFKB pathway. A posi-
tive feedback is possible because the TLR4-NFKB path-
way and the TNF-NFKB pathway have a common
downstream activating NFKB.
Secondly, NFKB activated by the TNF-NFKB pathway

induces inflammatory responses by increasing the
mRNA expression levels of inflammatory cytokines (e.g.
IL6 and IL12B) (Figure 3B and Figure S5). The inflam-
matory cytokines IL6 and IL2B stimulates the JAK-
STAT signaling pathway. The JAK-STAT signaling

Figure 3 Transcriptional regulations in dendritic cells treated with LPS. (A) and (B) shows the transcriptional regulations between the two
TRS Pathways at 2h and at 8h after the LPS treatment respectively. (A) At 2h after the treatment, TLR4 sensing LPS sends a signal to NFKB. NFKB
reinforces to increase its own expression by increasing the mRNA expression level of TNF. (B) At 8h after the treatment, NFKB activates the JAK-
STAT pathway through increasing the mRNA expression levels of IL6, IL12B, and OSM. The nodes represent proteins and their colors show their
mRNA expression levels (the same as Figure 1). Light cyan colored boxes represent gene families. The black edges represent PPIs and red edges
do positive PD interactions. The positive PD interactions are estimated based on the expression change of source and target genes.
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pathway provides one of the most direct routes to the
nucleus in which transcriptional activation is initiated by
each particular member of the STAT family [1]. In spite
of the simple pathway that consists of four JAKs and
seven STATs, the pathway translates more than 30 cyto-
kines into cell-type specific or context-dependent pat-
terns of cytokine responsiveness and gene expression
[39]. In this context, cytokine IL6, IL12B, and OSM
were activated by the TNF-NFKB pathway and the cyto-
kines increased the mRNA expression levels of the
interferon regulatory transcription factor family genes,
such as IRF1 and IRF7 by the JAK-STAT signaling path-
way. The chosen genes were transcription factors
involved in inflammation and apoptosis [40]. This inter-
pathway cross-communication is a good example of
transcriptional regulations between signaling pathways.
Thirdly, NFKB elevated the mRNA expression levels

of necessary genes for T cell stimulation: CD40, CD80,
ICAM1, CD83, CXCL10, CCL5, and CXCL11 (Figure
S5). CD40 and CD80 are co-stimulatory molecules that
bind to complementary receptors on the T cell surface,
in activating a T cell [1]. ICAM1 enables a T cell to
remain bound to an antigen-presenting cell long enough
for the T cell to become activated by binding lfa-1 on
the T cell surface [41]. Moreover, it was reported that
the mature dendritic cells expressed CD83 and high
levels of CD40, CD80, and CD86 [42]. CXCL10,
CXCL11, and CCL5 are chemoattractants that guide the
migrations of leukocytes such as T cells to induce a sui-
table immune response [43-45].
Lastly, NFKB increases the mRNA expression levels of

genes related to apoptosis, especially inhibitors of apop-
tosis (IAPs) such as BIRC2 and BIRC3 suppressing cas-
pases (Figure S5) [35]. At 2h after the LPS treatment,
mRNA expression levels of IAPs were only increased.
However, at 8h after the treatment, those of other genes
inhibiting apoptosis (IL15, NFKB1) were also increased.
This result shows that apoptosis would be repressed in
dendritic cells and it agrees with this context of the den-
dritic cell maturation. If apoptosis occurred in matured
dendritic cells, they could not perform their roles initiat-
ing adaptive immune responses as an antigen-presenting
cell.

Conclusions
We propose a new computational omics approach to
discover signaling pathways regulated by transcription
(TRS Pathways) and transcriptional regulations between
them in TRS Networks dependent on cellular contexts
to investigate the transcription-mediated mechanism of
inter-pathway cross-communication of signaling path-
ways. Our new approach has three advantages. Firstly,
highly reliable TRS Pathway candidates and transcrip-
tional regulations between pathways can be discovered.

Secondly, the approach can discover more known
knowledge than the previous approaches. Lastly, it helps
to understand the underlying biological phenomena of
cellular contexts by providing a graphical network. We
demonstrated that our analysis performed well in the
context of dendritic cells treated with LPS, since dendri-
tic cells commanding the human immune system are
very important to disease research. Likewise, our
approach determines how some signaling pathways are
transcriptionally regulated by other pathways in patients
by analyzing expression data comprising patients and
normal samples. Therefore, it would be very helpful to
understand the underlying biological phenomena of
complex diseases such as cancer.

Additional material

Additional file 1: Supplementary materials. It comprises 5 figures
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TRS Network, the TNF TRS Network, the D2D Network and the
jActiveModule network).
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