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ABSTRACT

Motivation: Gene set analysis has become an important tool for
the functional interpretation of high-throughput gene expression
datasets. Moreover, pattern analyses based on inferred gene set
activities of individual samples have shown the ability to identify
more robust disease signatures than individual gene-based pattern
analyses. Although a number of approaches have been proposed
for gene set-based pattern analysis, the combinatorial influence of
deregulated gene sets on disease phenotype classification has not
been studied sufficiently.
Results: We propose a new approach for inferring combinatorial
Boolean rules of gene sets for a better understanding of cancer
transcriptome and cancer classification. To reduce the search space
of the possible Boolean rules, we identify small groups of gene sets
that synergistically contribute to the classification of samples into
their corresponding phenotypic groups (such as normal and cancer).
We then measure the significance of the candidate Boolean rules
derived from each group of gene sets; the level of significance is
based on the class entropy of the samples selected in accordance
with the rules. By applying the present approach to publicly available
prostate cancer datasets, we identified 72 significant Boolean rules.
Finally, we discuss several identified Boolean rules, such as the
rule of glutathione metabolism (down) and prostaglandin synthesis
regulation (down), which are consistent with known prostate cancer
biology.
Availability: Scripts written in Python and R are available at
http://biosoft.kaist.ac.kr/∼ihpark/. The refined gene sets and the full
list of the identified Boolean rules are provided in the Supplementary
Material.
Contact: khlee@biosoft.kaist.ac.kr; dhlee@biosoft.kaist.ac.kr
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
With the advent of microarray technologies, genome-wide gene
expression profiling has become a crucial tool in biomedical research
during the past few decades. In cancer research, genome-wide gene
expression profiling has been used to discover new cancer subtypes
(Golub et al., 1999; Lapointe et al., 2004; Sorlie et al., 2003); to
develop gene expression signatures for cancer diagnosis, prognosis
or prediction of drug responsiveness (Nevins and Potti, 2007; Potti
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et al., 2006; van’t Veer et al., 2002); and to identify cancer associated
signaling pathways or cellular processes (Bild et al., 2006; Heiser
et al., 2009).

In a typical analysis of cancer gene expression profiles, individual
genes are ranked by the statistical significance of the differential
expression between two different experimental conditions; several
tens of top-ranked genes are then selected for further analysis, such
as cancer classification (Golub et al., 1999; Lapointe et al., 2004;
Nevins and Potti, 2007; Potti et al., 2006; Sorlie et al., 2003;
van’t Veer et al., 2002) and functional enrichment analysis (Al-
Shahrour et al., 2007; Dennis et al., 2003; Huang et al., 2009).
To investigate the combinatorial influences of deregulated genes
on disease phenotype classification, researchers have proposed
a number of multivariate approaches (Bo and Jonassen, 2002;
Mukherjee et al., 2009; Varadan and Anastassiou, 2006). However,
all of these individual gene-based approaches tend to produce
unstable gene lists or combinations of genes due to the small sample
size used in individual studies (Ambroise et al., 2002; Chuang et al.,
2007).

A recently developed type of gene set analysis aims to directly
evaluate the statistical significance of coordinated expression
changes of genes belonging to specific pathways or functional
categories without selecting an arbitrary number of highly ranked
genes in advance, and the gene sets are usually derived from the
Gene Ontology (Ashburner et al., 2000), Kyoto Encyclopedia of
Genes and Genomes (KEGG; Kanehisa et al., 2004), Reactome
(Vastrik et al., 2007), and other knowledge bases. These approaches
have the ability to detect gene sets whose constituent genes
show ‘subtle but coordinated expression changes,’ which might
not be detected by conventional functional enrichment methods
(Dinu et al., 2009; Mootha et al., 2003; Nam and Kim,
2008; Subramanian et al., 2005; Tian et al., 2005). Moreover,
several cancer classification approaches based on the gene set
activities inferred from individual samples perform better than other
cancer classification approaches based on the expression levels of
individual genes (Edelman et al., 2006; Lee et al., 2008a; Levine
et al., 2006; Pang et al., 2006).

Besides the gene set based cancer classification approaches,
various other approaches to the study of interdependencies among
gene modules have been proposed. Segal et al. (2004, 2003)
proposed a module network for learning about transcriptionally
coexpressed modules and their dependency structure so that
gene expression patterns in different types of cancer could be
characterized. That model differs from other gene set dependency
models in that it learns about the gene modules and their
dependency structure simultaneously from data rather than from
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predefined gene sets. Tomlins et al. (2006) defined more than
14 000 molecular concepts as gene sets of functionally related
genes or differentially expressed genes detected from cancer gene
expression datasets; they also constructed a molecular concept
map that connects two molecular concepts provided the number of
overlapping genes between them is statistically significant. Along
with the advantage of the unprecedented large collection of gene
sets, the approach of Tomlins et al. (2006) can relate a list of the
differentially expressed genes of an experiment to other previously
conducted experiments and to the curated concepts. Tomlins et al.
(2006) used the molecular concept map to analyze prostate cancer
expression profiles, and they could detect enriched subnetworks
related to prostate cancer progression models (Tomlins et al., 2006).
However, with their approach there is still a need to select a number
of differentially expressed genes between the two experimental
conditions, so that enriched subnetworks can be detected; and that
requirement makes it difficult to deal with heterogeneous patterns
of gene set activities among cancer samples. Pang et al. proposed
the use of a random forest algorithm for pathway clustering. They
use the genes in each pathway to build a random forest classifier
and then use the class votes of each classifier to construct feature
vectors of each pathway. The feature vectors are then applied to a
tight clustering algorithm for identification of the pathway clusters
(Pang et al., 2008).

Inferring gene set dependency models based on gene set activities
inferred for each sample has been proposed recently. Edelman et al.
proposed a method of detecting pathway dependencies in prostate
cancer progression models with 639 canonical pathways available
at the Molecular Signature Database (MSigDB). In their approach,
they used ASSESS to measure enrichment scores of pathways in
individual samples (Edelman et al., 2006). They also used the
covariance structure of the enrichment scores to infer a pathway
dependency structure relevant to the progression models (Edelman
et al., 2008). Although their approach was successful in identifying
pathways relevant to the cancer progression models, they have
not explicitly used the pathway dependency models to construct
predictive models.

In this work, we propose a new approach to the task of inferring
combinatorial Boolean rules of gene sets for a better understanding
of cancer gene expression profiles as well as cancer classification.
To this end, we first identify coherently expressed submodules of
each gene set belonging to the 639 canonical pathways available at
the MSigDB (Subramanian et al., 2005) and use the submodules as
background gene sets for further analysis. Second, we infer gene set
activities in individual samples by using gene expression profiles and
then binarize them. Third, we construct a gene set synergy network
(Watkinson et al., 2008); we use that network to search for small
groups of synergistic gene sets that provide rich information on the
disease status of samples. Finally, we extract significant Boolean
rules of the gene sets within each identified group and validate
the rules by using independent test datasets. For comparison with
other approaches, we use a random forest classifier for classification
analysis of the identified Boolean rules (Breiman, 2001).

2 METHODS

2.1 Datasets and preprocessing
We analyzed publicly available prostate cancer gene expression datasets
with our proposed approach. The datasets of Lapointe et al. (2004) and

Table 1. Prostate cancer microarray datasets

Dataset Platform nn nt

Traing set
Singh et al. (2002) HG-U95A 52 50
Lapointe et al. (2004) Spotted cDNA 41 62

Test set
Yu et al. (2004) HG-U95A 18 65
Tomlins et al. (2006) Spotted cDNA 27 32

The parameters nn and nt are the number of normal samples and cancer samples in a
dataset.

Singh et al. (2002) were used for learning the Boolean rules of gene sets,
and the datasets of Tomlins et al. (2006) and Yu et al. (2004) were used for
testing the learned Boolean rules. Table 1 summarizes the properties of the
datasets.

Where <20% of the values of the probe set in a dataset were missing, we
used the LLSimpute method (Kim et al., 2005) to impute the missing values.
Whenever a higher portion of values was missing, we excluded the probe set
from the subsequent analysis. We performed quantile normalization among
the arrays (Bolstad et al., 2003), and we finally normalized the expression
profile of each probe set to approximate a standard normal distribution across
the samples. The expression profiles of the probe sets for each gene were
summarized with the mean of their expression values.

2.2 Refinement of gene sets
As for gene sets, we downloaded the 639 canonical pathways from the
MSigDB (Subramanian et al., 2005). Because the inclusion of genes that are
not coherent with the other genes in a gene set can hinder the performance of
our analysis, we redefined the 639 canonical pathways by identifying tightly
coregulated submodules in the training datasets.

The coherence of the expression values of a gene set can be measured
in a number of ways. One most widely used measurement approaches is
to use the fraction of significantly correlated pairs of genes out of all the
possible pairs of genes in a gene set (Pilpel et al., 2001). To identify tightly
coregulated submodules for each gene set, we first calculated the pairwise
rank correlation coefficients of all the pairs of genes in the gene set. We
then constructed a correlation gene network that connects genes that have
a significant positive rank correlation coefficient (P < 0.05) and applied a
hierarchal graph clustering method called the fitHRG algorithm (Clauset
et al., 2008) to the gene correlation network so that we could identify densely
connected subnetworks. For each gene set, we selected maximal subnetworks
with a connection ratio >0.8. Subnetworks composed of less than three
genes were excluded from further analysis. As a result, we obtained 809
gene sets from the analysis of the gene correlation networks derived from
the 639 canonical pathways. The redefined gene sets are provided in the
Supplementary Materials.

2.3 Inference of gene set activity
After assuming that genes in a refined gene set are coherent, we used the
normalized mean of expression values as the activity of a gene set in an
individual sample. Let zkj be a normalized expression value of a gene, gk ,
in a sample, j , and let Pi be a set of genes. The activity of gene set Pi in
a sample, j, can then be measured with the following equation (Jiang and
Gentleman, 2007; Tian et al., 2005):

aij =
∑

gk∈Pi
zkj√|Pi| . (1)

We binarized the activity values of each gene set by using a median
binarization method for mining Boolean rules of gene sets.
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Fig. 1. A gene set synergy network extracted from the training datasets. In a simplification of the network, this figure shows only pairs of gene sets that have
high mutual information with sample phenotypes (P < 0.01) among the synergistic gene set pairs (P < 0.05). The network is visualized with the Pajek software
(Batagelj and Mrvar, 2002).

2.4 Gene set synergy network
To search for interdependency structures among the refined 809 gene sets,
we used the recently developed information theoretic measure of synergy
to measure the level of cooperativity between all the pair of gene sets. The
synergy between two predictive random variables, X and Y , with respect to a
dependent random variable, C, which denotes the disease status of a sample
in our framework, is defined as follows (Anastassiou, 2007; Hanczar et al.,
2007; Watkinson et al., 2008):

Syn(X,Y;C)= I(X,Y;C)−[I(X;C)+I(Y;C], (2)

where the I(X;C) is used to denote the mutual information between the
two random variables X and C. Thus, the synergy, Syn(X,Y;C) , can be
interpreted as the amount of additional information about C when the two
predictive variables X and Y are considered simultaneously rather than
individually. To assess the statistical significance of synergy, we use a
permutation test that randomly shuffles gene set activities within each class
of disease phenotype. As a result, we identified 421 pairs of gene sets that
have significant synergy (P < 0.05) as well as significant mutual information
with the sample phenotypes (P < 0.05) from the training datasets. Figure 1
shows the synergy network constructed with the pairs of synergistic gene sets.
The synergy network shows that prostate cancer related gene sets, namely
the glutathione metabolism and O-glycan biosynthesis gene sets, have many
synergistic partner gene sets for prostate cancer classification.

2.5 Synergistic hierarchical clustering
We searched synergistic clusters of gene sets that have rich information
about the sample phenotypes within the synergy network. For this purpose,
we constructed dendrograms with the following procedure:

(1) Each gene set is considered an isolated gene set cluster.

(2) The pairwise synergies among the gene set clusters are computed with
the Equation (3).

(3) Two clusters that have highest synergy are merged.

(4) Steps 2 and 3 are repeated until only k clusters remain.

Equation (3) is expressed as follows:

Synα(PSi,PSj;C)= I(PSi ∪PSj;C)α −[I(PSi;C)α +I(PSj;C)α]. (3)

Fig. 2. A random distribution of the entropy of the sample phenotypes
conditioned on a group of gene sets. We randomly sample 10 000 groups
of gene sets for groups of each size.

where PSi ={Pi1,··· ,Pin} and PSj ={Pj1,··· ,Pjm} are sets of gene sets and
I(PSi;C) is an abbreviation of I(Pi1,··· ,Pin;C). We introduce the parameter
α to adjust a bias of synergy towards a negative value when I(PSi;C) and
I(PSj;C) are large (as shown in the Supplementary Fig. S1). A larger α

tends to greedily merge two gene set clusters to maximize joint mutual
information between sample phenotypes and gene sets in a merged cluster,
whereas a smaller α tends to merge two gene set clusters that have a
large synergy value between the clusters. We use α=1,2,··· ,5 to produce
gene set dendrograms and select subclusters of gene set dendrograms if the
conditional entropy of sample phenotypes is <0.4. (See Fig. 2 for the random
distribution of conditional entropy.) We might consider each gene set clusters
produced with this approach as co-regulated functional modules in a specific
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phenotype condition but not in all the conditions. The detailed procedure for
constructing gene set synergy dendrograms using a hierarchical clustering
algorithm is described in the Algorithm 1.

Data: A= (aij) is a binarized gene set activity profiles; C = (cj)
denotes the disease status of a sample j.

Input: G= (V;E) is a gene set synergy network described with
a set of vertices (gene sets), V , and edges, E, and α is a
control parameter of merge process

Output: Gene set synergy dendrograms

Dendrograms = {Di = (null,null,{Pi})|Pi ∈V} ;
//A dendrogram is defined as (left child, right child, a set of elements)
�=∅; //� contains synergy values of pairs of gene set clusters

foreach pair of (Di,Dj) in Dendrograms do
synergy=synα(ElementsOf(Di),ElementsOf(Dj);C) ;
add (Di,Dj,synergy) to � ;

end

while |Dendrograms|==k do
//k is the number of connected components in the graph G
Dml,Dmr =argmaxDi,Dj

SynergyOf(Di,Dj;�) ;
�\{(Di,Dj,synergy)|{Dml,Dmr}∩{Di,Dj} �=∅} ;
Dmerged =Merge(Dml,Dmr ) ;
Dendrograms\{Dml,Dmr}
foreach Dk in Dendrograms do

if Connected(Dmerged , Dk; G) then
PSk = ElementsOf(Dk) ;
PSmerged = ElementsOf(Dmerged ) ;
synergy=synα(PSk,PSmerged;C) ;
add (Dk,Dmerged ,synergy) to � ;

end
end
add Dmerged to Dendrograms

end

//Each element in V corresponds to a random variable that represent
row vectors of A= (aij)

//ElementsOf(Di) returns a set of elements included in Di

//Connected(Di,Dj;G) is TRUE if there is a path between a set of
nodes in Di and Dj in the graph G

//Merge(Di,Dj) returns a dendrogram
Dm = (Di,Dj,the union of elements in Di and Dj)

Algorithm 1: Construction of gene set synergy dendrograms

2.6 Entropy estimation
For a small sample size, the maximum likelihood estimator, ĤMLE , tends
to underestimate the entropy of observations. When the conditional entropy
of sample phenotypes is calculated, the number of samples that fall in each
Boolean state of the gene set activities decreases as the number of predictive
gene sets increases. To avoid underestimation of the maximum likelihood
entropy estimator for such a small sample size, we use the Miller–Madow
estimator, ĤMM , which is expressed as follows (Paninski et al., 2003):

p̂i = ni

N
,

ĤMLE =
m∑

i=1

p̂ilogp̂i,

ĤMM = ĤMLE + m−1

2N
.

(4)

Table 2. Significanct Boolean rules

ID Rule Training Testing (rank-sum test)
H(C|Ri) ptomlins pyu

*R1 ¬P170¬P640 0.0078 0.0002 <0.0001
*R2 ¬P352P457 0.0093 0.0002 0.0002
R3 ¬P311P457 0.0094 0.0001 <0.0001
R4 P457¬P476 0.0098 0.0025 0.0008
R5 P224¬P352 0.0100 0.0003 0.0001
*R6 P224¬P588 0.0100 0.0003 0.0001
R7 ¬P311P673 0.0100 <0.0001 <0.0001
R8 ¬P352P579 0.0106 <0.0001 0.0002
*R9 P114¬P154 0.0109 0.0004 0.0005
R10 P114¬P476 0.0109 0.0071 0.0002
R11 P224¬P311 0.0111 0.0002 <0.0001
R12 ¬P311P321 0.0111 0.0001 <0.0001
R13 ¬P476P579 0.0111 <0.0001 <0.0001
R14 ¬P132P323¬P784 0.0119 <0.0001 <0.0001
R15 ¬P311P692 0.0119 0.0002 0.0002
R16 ¬P352P457¬P476 0.0125 0.0003 <0.0001
R17 ¬P170P505 0.0128 0.0003 0.0006
*R18 ¬P405¬P431P775 0.0128 0.0025 <0.0001
R19 P132¬P323P784 0.0128 <0.0001 <0.0001
R20 P342¬P436 0.0132 <0.0001 <0.0001

The term H(C|Ri) denotes the class entropy of samples selected by rule Ri . The selected
rules (*) are investigated to find known or putative synergistic relations among the gene
sets. Table 3 shows the gene sets that appear in the rules.

With Equation (4), the bias of the maximum likelihood estimator, ĤMLE ,
can be corrected by adding the estimated bias term m−1

2N , where is the number
of possible observations (that is, normal and cancer) and m is the number of
samples within each Boolean condition of the gene set activities. We use ni

and p̂i to denote the number of samples and estimated probability in each
phenotypic state under a Boolean condition of gene set activities.

3 RESULTS AND DISCUSSION

3.1 Boolean rules of synergistic gene sets
Synergistic hierarchical clustering methods identified 31 groups of
synergistic gene sets with a low threshold of conditional entropy; i.e.
H(C|Pi1,··· ,Pik)<0.4. From each identified small group of gene
sets, we were able to extract significant Boolean rules by evaluating
the significance of all the possible conjunctive Boolean functions.

3.2 Validation with independent datasets
We validated the identified Boolean rules by using the datasets of
Tomlins et al. (2006) and Yu et al. (2004). To quantify the level
of agreement between the Boolean rules and the gene expression
profiles of each test dataset, we devised a following scheme from
the log-rank sum approach (Breitling et al., 2004).

With the Boolean rule R= (Pp1 ∧···∧Ppk)∧(¬Pn1 ∧···∧¬Pnm),
we divided the literals into PL={Pp1,...,Ppk} and NL=
{Pn1,...,Pnm} to, respectively, represent the sets of gene sets that
positively and negatively participate in the rule. We then constructed
rank profiles for each element of PL and NL in ascending and
descending order, respectively. Finally, we calculated the sum of the
log-ranks from the rank profiles of the literals for each sample. To test
the significance of each rule, we performed a rank-sum test for the
sum of the log-ranks of the literals of the normal and cancer samples.
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Table 3. Gene sets in the identified Boolean rules

ID Name Genes

P114 DNA replication MCM5, NACA, ORC3L,
POLD2, POLD4, RPA1, RPS27A

P132 ERK pathway EGFR, MKNK1, PDGFRA, SOS1
P154 G1 pathway CDKN1A, SMAD3, TGFB3
P170 Glutathione meta. GSTM3-5, GPX2-3, GSTA2
P224 Purine meta. NME1, NME4, POLR2F
P311 Meta. xenobiotics ADH5, GSTP1, MGST3
P321 ABC transporters ABCA2, ABCA5, ABCA8, ABCC4,

ABCD3, TAP1
P323 Ribosome FAU, RPL proteins, RPS proteins
P342 Calcium signaling ITPR3, P2RX4, SLC25A6
P352 Cell cycle CDKN1A, SMAD3, TGFB3
P405 Complement and C1R, CD59, CFD, CFH, CFI,

coagulation cascades SERPINA5, SERPING1
P431 Olfactory transduction CALML3, CAMK2A, CAMK2G,

CLCA2, GNAL, GUCA1A, PDE1C,
PRKG1, PRKX

P436 Regulation of actin ACTN1, PPP1R12B, ROCK2
cytoskeleton

P457 Type 1 Diabetes CPE, ICA1, PTPRN2
mellitus

P476 Colorectal cancer FZD1, FZD7, PDGFRA, SMAD3,
SOS1, TCFL2, TGFB3

P505 Small lung cancer AKT2, BCL2L1, CCNE1, CDK6,
CDKN2B, COL4A4, E2F1, E2F2,
FHIT, IKBKB, IKBKG, ITGA2B,
ITGAV, NFKB2, NOS1, PIAS2,
PIAS4, PIK3CB, PIK3CG,
PIK3R2-3, RXRG, TP53,
TRAF1, TRAF3

P579 Ndkdynamin path. EPS15, NME1, PICALM, SYNJ2
P588 Nicotinate meta. AOX1, CD38, NNT, NT5E
P640 Prostaglandin synthesis ANXA1, ANXA4, EDNRA, EDNRB,

regulation HSD11B1, PTGER2, PTGIS, PTGS2
P673 Ribosomal proteins FAU, MRPL19, RPL proteins,

RPS proteins
P692 SET pathway APEX1, CREBBP, NME1, SET
P775 TERT pathway HDAC1, MYC, MZF1, SP3
P784 Tob1 pathway SMAD, TGFB3, TGFBR3

A full list of the refined gene sets is provided in the Supplementary Material.

Table 2 shows top 20 Boolean rules validated from the test datasets;
Table 3 shows the gene sets that appear in the selected rules. Several
selected rules are discussed below. Figure 3 shows scatter plots of
samples; these plots are based on the activities of the gene sets
included in the most significant rules, R1 and R2.

• R1: glutathione metabolism (down) and prostaglandin
synthesis regulation (down) The glutathione s-transferases
(GSTs) are known to be involved in the metabolism of
carcinogens and in the defense against reactive oxygen species.
Moskaluk et al. (1997) confirmed the down-regulation of
π-class GSTs in adenocarcinoma of the prostate. In many
types of cancer, COX-2 is known to be overexpressed,
and the overexpression of COX-2 leads overproduction of
prostaglandin E2 (Eruslanov et al., 2009). Note also that
the highly selective inhibitor of COX-2, celecoxib, has been
researched for use in cancer treatments as a supplement to

Fig. 3. The scatter plots of samples using activities of gene sets in the
Boolean rules R1 (a and c) and R2 (b and d).

pain treatments. Our analysis shows no significant change in
the COX-2 expression level for the prostate cancer samples,
though the other member genes PTGER2, PTGIS, EDNRA,
and EDNRB are significantly down-regulated. (Jakobsson
et al., 1999) identified a glutathione-dependent prostaglandin
E synthase, which might be a cause of the down-regulation
of prostaglandin synthesis regulation in the primary prostate
cancer. Recently, GSTP1 and PTGDS have been proposed as
key molecules in prostate cancer classification (Varadan and
Anastassiou, 2006; Watkinson et al., 2008).

• R2: insulin-dependent diabetes mellitus (up) and transforming
growth factor (TGF )-β-dependent SMAD signaling (down)
The association of prostate cancer risk and insulin-dependent
diabetes has been reported in several population-based studies
(Hsing et al., 2001; Pierce et al., 2008). In our analysis,
the submodule of insulin-dependent diabetes mellitus that
contains ICA1, PTPRN2, and CPE shows a higher level of
activation in primary prostate cancer. On the other hand, an
androgen receptor (AR) has been known to negatively modulate
TGF-β-dependent SMAD signalling in AR-dependent prostate
cancer (van der Poel et al., 2005); thus TGF-β-dependent
SMAD signalling is down-regulated in AR-dependent prostate
cancer. Interestingly, Lin et al. (2009) reported that the TGF-β
signalling effector SMAD3 represses insulin gene transcription
in pancreatic islet cells.

• R6: purine metabolism (up) and nicotine and nicotinate
metabolism (down) Alteration of the purine metabolism either
facilitates production or retards degradation of adenosine,
which is the main element of ATP (Linden et al., 2006).
Obajimi et al. (2009) showed that inhibition of de novo purine
synthesis in LNCaP cells results in ATP depletion. On the other
hand, the nicotin and nicotinate metabolism, which includes
AOX1 and NTE5, is related to antioxidation of reactive oxygen
species (Dong et al., 2008), and those genes show significantly
decreased expression patterns in the primary prostate cancer.

• R9: DNA replication (up) and G1 pathway (down) AR
has been suggested as a licensing factor for DNA
replication in androgen-sensitive prostate cancer cells
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Fig. 4. Comparison of classification performance: a tenfold cross-validation.
The figure shows (a) cross-validation errors and (b) the area under t he curve
of random forest classifiers, which are based on Boolean rules for genes, gene
sets, and the sum of log-rank. The most significant 50 features are selected
from the training datasets of each classifier.

(Litvinov et al., 2006); in addition, the DNA replication
regulation protein MCM7 has been suggested for use as a
proliferation marker in prostate cancer (Padmanabhan et al.,
2004). On the other hand, the G1 pathway is an important
checkpoint of cell proliferation. Thus, the tumor cells undergo
uncontrolled proliferation by destroying the G1 pathway while
activating the DNA replication pathway.

• R18: complement and coagulation (down), calmodulin (down)
and TERT pathway (up) The genes SERPINA5 and
SERPING1, which are involved in the complement and
coagulation pathway, are important for preventing cancer cell
growth and metastasis in breast and prostate cancer (Sieben
et al., 2005). Calmodulin is known as a negative modulator of
ARs, which play an important role in AR breakage (Cifuentes
et al., 2004). Therefore, the loss of expression of those genes
promotes the development of prostate cancer. In the TERT
pathway, the genes HDAC1, MYC, MZF1 and SP3 show higher
expression levels in prostate cancer; they contribute to the
survival and proliferation of cancer cells (Lee et al., 2008b).

3.3 Classification analysis
We used the discovered Boolean rules of the gene sets to perform
classification analysis. We obtained feature vectors in individual
samples for the Boolean rules with the log-rank sum of literals
in the rule described in the previous section, and we constructed
random forest classifiers (Breiman, 2001) for the test datasets by
using the features selected from the training datasets. Using the
cross-validation errors and the area under the curve (as shown in
Fig. 4), we compared the overall classification performances with
the classification based on the genes and gene sets. For independent
datasets, our results are comparable the classification based on genes
and gene sets.

4 CONCLUSION
We have presented a method of inferring Boolean rules of gene sets
from cancer microarray datasets. We first identified small subsets of
gene sets that are synergistic; we then enumerated all the possible
conjunctive Boolean functions of the gene sets within each group

of gene sets; and, finally, we evaluated the predictive powers of the
Boolean functions.Although several approaches have been proposed
to reveal the Boolean logic of individual molecules (Ruczinski
et al., 2003; Mukherjee et al., 2009; Varadan and Anastassiou,
2006), our method is different with those methods in that we try
to identify relevant variables by using a synergy network before
we search for the Boolean rules. We have identified and discussed
several significant Boolean rules of gene sets that are frequently
observed in prostate cancer. Our results show the possibility of using
Boolean rules of gene sets for cancer classification, and the identified
Boolean rules provide insights into the combinatorial influences of
deregulated gene sets on cancer developments. The coverage of gene
set analysis increases as the information on pathway interactions
is accumulated. Thus, further research directions should include
the pathway interaction information for the dissection of coherent
submodules in a gene set.
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