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Abstract: PIL5 is a member of the basic Helix-Loop-Helix (bHLH) 
transcription factor superfamily. We previously showed that PIL5 binds to the 
G-box (CACGTG) motif with high affinity. However, since there are many 
randomly matched G-box motifs throughout the genome, other factors must 
account for the in-vivo PIL5 binding specificity. In this study, we investigated 
if in-vivo PIL5 binding sites can be explained by any other attributes extracted 
from various sources. Our results showed that PIL5 binding sites can be 
explained by attributes such as neighbouring motif composition, nucleosome 
density, DNA methylation and distance from transcription start site in addition 
to G-box. 
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1 Introduction 

The bHLH proteins form a large superfamily of transcriptional regulators and play crucial 
roles in diverse biological processes. The bHLH family contains a highly conserved 
domain consisting of two functionally distinct regions: a basic region and an HLH region. 
The basic region binds to DNA, whereas the HLH region serves as a dimerisation motif 
(Jones, 2004). The interaction between the HLH regions of two bHLH proteins leads to 
the formation of a homodimeric or a heterodimeric complex, which recognises and binds 
to a core hexanucleotide DNA sequence (Shimizu et al., 1997). 

Many bHLH proteins bind to the E-box element (CANNTG) or the G-box element 
(GACGTG). The first bHLH motif was identified in two murine transcription factors 
known as E12 and E47 (Murre et al., 1989). Since then, tremendous bHLH proteins  
have been identified in animals, plants and fungi and classified into six main groups 
based on their evolutionary sequence composition and their DNA-binding specificities 
(Atchley and Fitch, 1997; Ledent and Vervoort, 2001). In Arabidopsis, 147 bHLH 
protein-encoding genes were identified from the analysis of multiple sequence 
alignments. Sequence analysis suggested that most of these proteins would recognise  
E-box, and more specifically, 89 proteins (60% of the total number) would bind to  
the G-box (Toledo-Ortiz et al., 2003). 

PIL5 is a bHLH transcription factor that inhibits seed germination. The in-vitro 
binding assay indicated that PIL5 binds to the G-box. However, the ChIP analysis 
indicated that PIL5 binds not to all G-boxes but only to some G-boxes. This raised a 
question how a bHLH transcription factor such as PIL5 binds to specific G-boxes. Since 
different G-boxes are present in the context of different DNA sequences, it has been 
postulated that other attributes such as flanking sequences may contribute to the binding 
specificity. Genome-wide analysis of PIL5 binding sites further indicated that PIL5 binds 
to only a fraction of G-boxes in Arabidopsis genome. We previously conducted 
chromatin immunoprecipitation coupled with microarray (ChIP-chip) assay to identify 
genome-wide binding sites of PIL5 (Oh et al., 2009). Through the analysis, we identified 
total 748 PIL5 binding sites. Although G-box was the most significant target binding 
motif, only 58.5% (438/748) of PIL5 binding sites had at least one G-box in their 
extended 500bp sequences, indicating that other factors must account for the in-vivo 
PIL5 binding specificity. 

There have been many studies to identify other attributes involved in DNA-binding 
specificity. The flanking sequences outside of the hexanucleotide core motif have been 
shown to play a role in binding specificity (Atchley et al., 1999), and the loop residues  
in bHLH proteins known to be involved in DNA binding through flanking sequences 
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(Nair and Burley, 2000). The DNA-binding affinity of transcription factors can also be 
affected by chromatin structure. Recent studies showed that DNA methylation and 
histone modification play important roles in regulating chromatin structure (Zhang et al., 
2006, 2007). However, genome-wide binding specificity analysis for bHLH proteins has 
not been reported yet. 

In this study, we investigated which attributes contribute to the in-vivo PIL5  
DNA-binding sites. First, we defined PIL5 binding sites and non-binding sites from our 
previous ChIP-chip assay result and compared them to see what aspects were different. 
Then, we extracted various attributes from public databases as well as the result of our 
previous ChIP-chip assay. Finally, we verified the significance of these attributes by 
using two popular machine-learning methods, Random Forest and SVM. The Random 
Forest and SVM classifier could classify PIL5 binding sites from non-binding sites with 
accuracy of 93.05% and 92.31%, respectively. We found that other attributes such as 
neighbouring motif composition, nucleosome density, G-box presence, DNA methylation 
and distance from Transcription Start Site (TSS) were involved in PIL5 DNA-binding 
specificity. 

2 Results and discussion 

2.1 Characterisation of the PIL5 binding sites and non-binding sites 

In our previous ChIP-chip assay (Oh et al., 2009), we identified 748 PIL5 binding sites 
using Tamalpais peak-calling algorithm (Bieda et al., 2006) with slight modification.  
In brief, a minimum of six consecutive probes in the top 1% of all probes on the array 
were used as threshold for identifying PIL5 binding sites. We adopted these 748 PIL5 
binding sites as true binding data set. In similar way, PIL5 non-binding sites were 
identified from the result of ChIP-chip array with a minimum of six consecutive probes  
in low 10% of all probes. As a result, total 3678 non-binding sites were identified and 
assigned as non-binding data set. 

We compared genomic characteristics between PIL5 binding sites and non-binding 
sites to get insight what make differences. First, we compared chromosomal distribution. 
PIL5 binding sites and non-binding sites are uniformly distributed throughout the  
five chromosomes. In contrast to the binding sites that are largely absent in  
the centromeric regions, the non-binding sites are evenly distributed throughout the 
chromosome (Figure 1(A)). These results imply that chromosomal structures influence 
the in-vivo PIL5 binding sites. 

Second, we compared genomic positions with regard to promoter regions.  
The promoter regions are defined as upstream 3000 bps and downstream 500 bps from 
the transcription start sites. While most of the binding sites (71%) are located in promoter 
region, majority of non-binding sites (69%) are located in the genic regions  
(Figure 1(B)). Considering the fact that 49.7% of the Arabidopsis genome consists of 
genic region, it seems that non-binding sites are uniformly distributed along the 
chromosome. In addition, we compared the distances of the binding sites or non-binding 
sites that are present in the promoter region from transcription start sites. While the 
locations of the PIL5 binding sites are further skewed towards immediate upstream from 
the transcription start sites, non-binding sites were uniformly distributed (Figure 1(C)). 
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These results are coherent with the fact that PIL5 is a key transcription regulator in seed 
germination process (Oh et al., 2006). 

Figure 1 Comparison between PIL5 binding sites and non-binding sites: (A) comparison between 
PIL5 binding sites and non-binding sites in the five Arabidopsis chromosomes. Upper 
and lower bars represent the positions of the PIL5 binding sites and non binding sites 
respectively on each chromosome. Black circles indicate the location of the centromere; 
(B) comparison between PIL5 binding sites and non-binding sites in the Arabidopsis 
genome and (C) comparison between PIL5 binding sites and non-binding sites in the 
promoter regions (–3000 to 500 bps) 

 

Third, we compared the presence of G-box because the G-box was the only motif 
identified by motif-finding programmes (AlignACE (Roth et al., 1998) and MDscan  
(Liu et al., 2002)) in PIL5 binding sites (Oh et al., 2009). Since the G-box motifs are 
highly enriched within +250 to −250 bps of PIL5 binding sites (Oh et al., 2009),  
500bp extended sequences were searched in both binding sites and non-binding sites. 
While 58.5% (438/748) of binding sites have at least one G-box, only 3.3% (120/3678) of 
non-binding sites contain G-box. This is consistent with fact that G-box is the core 
binding motif for PIL5. However, at the same time, the 120 G-boxes in the non-binding 
sites indicate that G-box is not a sole determinant of PIL5 binding sites. Overall, these 
results imply that many attributes including other binding motifs may influence the PIL5 
DNA-binding specificity. 

2.2 Investigation of possible attributes involved in PIL5 DNA-binding 

We extracted possible attributes from public databases as well as the result of our  
ChIP-chip assay. First, since the G-box was the only motif identified in PIL5 binding 
sites by motif-finding programmes, the presence of G-box within 500 bp extended 
window was considered as the first attribute. 

Second, since the 41.5% (310/748) of PIL5 binding sites does not contain G-boxes, 
other motifs may serve as PIL5 DNA-binding sites. We searched over-represented motifs 
by Oligo-analysis (van Helden et al., 1998) and found that they more likely to be 
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clustered together around binding sites. In average, binding sites had top 20 ranked  
over-represented motifs by three times more than non-binding sites. The G-box is one of 
the well-known ABA-Responsive Elements (ABREs) and ABRE requires a second 
element called Coupling Element (CE) to form a functional ABA response complex 
(ABRC) (Shen et al., 1996). The clustered top-ranked motifs may represent the relation 
between ABREs and CEs. To formulate the neighbouring motif composition within 
500 bp extended window as a single attribute, we devised neighbouring motif score as the 
second attribute (see Materials and Methods). 

Third, the distance from transcription start site of nearest gene was considered as 
attribute. As we could see in Figure 1(C), there was strong correlation between the 
distance from transcription start site and the number of binding sites. The shorter the 
distance from transcription start site, the more the binding sites were observed.  
So, we believe that the binding specificity of PIL5 would rely on whether a binding 
occurs within a promoter region or not. 

Fourth, the presence of CpG islands was considered. In Arabidopsis, DNA 
methylation is found primarily in the CG sequence and a large fraction of methylation is 
also found in the CNG and CHH (an asymmetric site, where H is A, C or T) sequence 
(Chan et al., 2005). Putative CpG islands were predicted by the CpG Island Searcher 
(Takai and Jones, 2002). 

Fifth, DNA methylation profile was also applied to reflect in-vivo methylation 
pattern. The interdependency between DNA methylation and gene transcription has long 
been the subject of many studies (Kass et al., 1997; Klose and Bird, 2006; Zilberman  
et al., 2007), so DNA methylation pattern would be involved in PIL5 binding specificity. 
Currently, genome-wide DNA methylation map was constructed using high-resolution 
methylcytosine immunoprecipitation (mCIP) method (Zhang et al., 2006). 

Sixth, Low Nucleosome Density (LND) score was imported as an attribute.  
In eukaryotic organisms, promoter accessibility is influenced by chromatin structure and 
promoter regions are generally more accessible to transcription factors (Sekinger et al., 
2005). Since PIL5 functions as a transcription factor, PIL5 would be more likely to bind 
LND regions. 

Seventh, repeat element score was also considered as attribute. Large-scale DNA 
sequencing has revealed that most of the repetitive DNA is derived from the transposable 
elements. Recent studies showed that transposable elements were involved in the 
regulation and rearrangement of genes (Bennetzen, 2000). 

Finally, average gene expression level was also considered as an attribute.  
The ChIP-chip array results showed that PIL5 rarely bound to centromeric regions in 
chromosomes. The centromeric regions are usually composed of heterochromatin, which 
cause tight compact of chromatin structure. It is known that the expression of genes in 
heterochromatin regions is down-regulated. So, if we calculate the average expression 
level within about 10 kbp window, it could represent whether it is heterochromatin or 
euchromatin. 

To measure the significance of these attributes, we performed statistical comparison 
between PIL5 binding sites and non-binding sites. However, since the size of non-binding 
sites was five times larger than that of binding sites, the same sizes of 100 non-binding 
sets were generated to balance the size. Each non-binding set was composed of  
748 non-binding sites, which were randomly chosen from 3678 non-binding sites. 

As a statistical evaluation, the Welch two sample t-test was performed. Categorical 
attributes such as G-box presence, CpG islands and repeat regions were coded as 1 and 0 
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and applied for the t-test. The results showed that neighbouring motif score and G-box 
presence were most significantly different between two classes (Table 1). This is 
consistent with the fact that DNA-binding motif is a fundamental attribute involved in 
TF-DNA binding (Kadonaga, 2004). The p-values of other attributes such as distance 
from TSS, methylation score, gene expression level and repeat region were also 
significant between two classes, suggesting that they also influence the in-vivo PIL5 
DNA-binding sites. 

Table 1 The result of Welch two sample t-test 

Attribute name p-valuea sdb 

Neighbouring motif score 1.11E-137 5.20E-137 
G-box presence 1.47E-124 1.37E-123 
Distance from TSS 6.50E-46 6.42E-45 
Methylation score 4.14E-24 3.46E-23 
Gene expression level 1.72E-22 9.50E-22 
Repeat region 7.58E-10 4.88E-9 
CpG island 3.83E-3 8.75E-3 
LND score 3.89E-2 1.32E-1 

ap-value: Averaged p-value of 100 two-sample t-test. 
bsd: Standard deviation of p-values. 

2.3 Classification of PIL5 binding sites 

The purpose of this study is to verify whether other attributes except G-box were also 
involved in PIL5 DNA-binding specificity. We, therefore, built classifiers and validated 
accuracies using two popular machine-learning methods, Random Forest (Breiman, 
2001) and SVM (Cortes and Vapnik, 1995) implemented in Weka (Witten and Frank, 
2005) and BioWeka (Gewehr et al., 2007), respectively. Each classification task  
was performed 100 times with 1496 instances composed of 748 binding sites and the 
same number of non-binding sites from one of the 100 non-binding sets. Ten-fold  
cross-validation method was applied in test procedure. 

First, we measured the significance of each attribute by applying one attribute at  
a time. The result showed that neighbouring motif score was the most significant attribute 
with accuracy of 83.38% and 84.37% in Random Forest and SVM, respectively  
(Table 2). This can be explained by the fact that neighbouring motif score was extracted 
from in-vivo experimental result but other attributes were extracted from indirect sources. 
The fact that the classification performance of neighbouring motif score was better than 
the presence of G-box was consistent with our hypotheses that neighbouring other motifs 
were also involved in PIL5 DNA-binding specificity not only the presence of G-box. 
Previous studies showed that ABRE requires CEs to form a functional ABRC (Shen  
et al., 1996) and the ABRE–ABRE pairing is also possible in Arabidopsis (Gomez-Porras 
et al., 2007). Although the precise combinatorial binding mechanism among ABREs and 
CEs is remained to be determined, the actual binding occurrences seem to be well 
represented by neighbouring motif score. Among attributes, average expression level, 
repeat regions and CpG islands showed weak performance with accuracy of lower than 
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60% in both classifiers. Their actual effect for PIL5 DNA-binding may not be significant 
or it is possible that current resolutions of these data are not suitable for correct 
classification. Interestingly, although the p-value of LND score was not significant,  
it showed second best performance in classification. It seemed that computationally 
predicted CpG islands were not consistent with in-vivo methylation pattern. 

Table 2 Classification accuracy for each attribute 

Random Forest  SVM 
 avga sdb avga sdb 

Neighbouring motif score 0.8338 8.75E-3 0.8437 9.07E-3 
LND score 0.7874 1.01E-2 0.8122 9.98E-3 
G-box presence 0.7760 3.37E-3 0.7760 3.37E-3 
Methylation score 0.6783 1.24E-2 0.7205 9.81E-3 
Distance from TSS 0.6520 1.12E-2 0.6703 1.23E-2 
Gene expression level 0.5877 1.47E-2 0.5948 1.10E-2 
Repeat region 0.5448 5.54E-3 0.5448 5.54E-3 
CpG island 0.5368 6.97E-3 0.5368 6.97E-3 

aavg: Averaged accuracy of 100 classification result. 
bsd: Standard deviation of accuracies. 

Second, when we applied all attributes in the classification, the average accuracies were 
93.15% and 92.31% in Random Forest and SVM, respectively (Table 3). Surprisingly, 
the averaged value of accuracy, precision, recall and F-measure was very similar in both 
classifiers. This result indicated that Random Forest and SVM showed very robust 
performance. The accuracy of Random Forest was slightly higher than that of SVM. 
However, when we first applied SVM with default parameters, the accuracy was around 
66%. Since it is known that the performance of SVM is comparable with Random  
Forest (Pang et al., 2006), we try to find optimal parameters for SVM with greedy search. 
With parameter adjustment, the accuracy of SVM went up to 92.31%. 

Table 3 Performance of the classification 

Random Forest  SVM 
 avga sdb avga sdb 
Accuracy 0.9315 5.78E-3 0.9231 5.48E-3 
Precision 0.9317 5.79E-3 0.9232 5.48E-3 
Recall 0.9315 5.78E-3 0.9231 5.48E-3 
F-measure 0.9315 5.78E-3 0.9231 5.48E-3 
ROC area 0.9730 3.50E-3 0.9231 5.48E-1 

aavg: Averaged values of 100 classification result. 
bsd: Standard deviation of values. 

Third, we tried to select minimum number of attributes, which give us satisfactory 
accuracy. We measured classification accuracies by adding one feature at a time with best 
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first search algorithm. Figure 2 showed that classification accuracy was saturated over 
90% using four features (neighbouring motif score, LND score, G-box presence and 
methylation score) and remaining features barely contributed to the increase in accuracy. 
These results indicate that PIL5 DNA-binding can be mainly affected by consensus 
DNA-binding motifs including G-box, nucleosome density and DNA methylation 
pattern. Then, we selected optimal subsets of attributes with exhaustive search algorithm. 
The results showed that in addition to the above four attributes, distance from TSS was 
also included in optimal subsets and other attributes are not frequently included in 
optimal subset with 10-fold cross-validation procedure. 

Figure 2 Classification accuracy according to the different number of attributes 

 

3 Conclusion 

Transcription factors regulate gene expression by recognising and binding to specific 
DNA motifs. So, their target DNA sequences have been conserved through evolution.  
To achieve precise specificity required for correct temporal and spatial transcription,  
the length of DNA-binding motifs should be long enough. However, in many cases, 
conserved binding motifs are not quite long, so there must be other attributes involved in 
DNA-binding specificity. 

In this study, we analysed genome-wide DNA binding specificity of PIL5, a member 
of the bHLH transcription factor in Arabidopsis. Although our previous study shows that 
PIL5 binds to the G-box (CACGTG) motif with high affinity, sequence matching can be 
occurred randomly owing to the short length of G-box. In addition to this, large number 
of other bHLH proteins also shares the same or similar consensus-binding sequences.  
For these reasons, we investigated other attributes, which could affect PIL5 DNA-binding 
specificity. 

First, we defined PIL5 binding sites and non-binding sites from ChIP-chip assay 
result. We adopted 748 PIL5 binding sites from our previous result and newly identified 
3678 non-binding sites with a minimum of six consecutive probes in low 10% threshold. 
Then, we compared genomic characteristics between PIL5 binding sites and non-binding 
sites to get insight what make differences. We found that the location of binding sites  
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in promoter and chromosome were involved in PIL5 DNA binding as well as the 
presence of G-box motif. 

Second, we investigated 8 attributes extracted from public databases as well as the 
result of our previous ChIP-chip assay. They were G-box presence, neighbouring motif 
score, distance from transcription start site, CpG islands, DNA methylation, nucleosome 
density, average gene expression and repeat region. The significance of these attributes 
was evaluated by comparing PIL5 binding sites and non-binding sites. The result of two 
sample t-test showed that p-values of these attributes, especially neighbouring motif score 
and G-box presence were very significant. 

Finally, we further verified the significance of other attributes by using two popular 
machine-learning methods, Random Forest and SVM. The Random Forest and SVM 
classifier distinguished PIL5 binding sites from non-binding sites with accuracy of 
93.15% and 92.31%, respectively. We found that top-ranked five attributes were optimal 
subsets for classification through exhaustive search algorithm. In conclusion, we believed 
that various other attributes such as neighbouring motif score, nucleosome density, G-box 
presence, DNA methylation and distance from TSS were involved in PIL5 DNA-binding 
specificity. 

4 Materials and methods 

4.1 Neighbouring motif score 

Total 4096 hexanucleotides can be enumerated but only 2080 hexanucleotides are 
distinctive if reverse complement motifs are considered as identical motifs. For each 
hexanucleotide, significance score was calculated by Oligo-analysis programme (Li et al., 
2006). Briefly, oligo-analysis programme calculates p-values from binomial test. 
Expected oligonucleotide frequencies were calculated from Arabidopsis whole genome 
sequences and observed oligonucleotide frequencies were obtained from 748 extended 
binding sites. 

To define significant motif, only 99th percentile of hexanucleotides, top-20 ranked, 
were regarded as significant motifs. 

10

neighbouring motif score sig

sig log ( value) j

i ij
j

j p

=

= −

∑
 

The neighbouring motif score of ith binding site is calculated by summing up the sig 
value of jth matching motifs within 500 bp window. 

4.2 CpG island 

The CpG islands were predicted using the CpG Island Searcher programme (Takai and 
Jones, 2002). The programme was downloaded from the website (http://cpgislands. 
usc.edu/) and run with parameter as GC% higher than 50, observed/expected (o/e) ratio 
higher than 0.6, and 200 bp window size. The CpG islands score for each binding site 
was calculated by checking whether any CpG islands were overlapping within extended 
500 bp window. 
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4.3 DNA methylation score 

Genome-wide DNA methylation map was constructed using high-resolution mCIP 
method (Zhang et al., 2006). The raw tiling array data was downloaded from Gene 
Expression Omnibus (GEO) and accession number is GSE5094. Data normalisation and 
analysis was conducted using Tiling Analysis Software (TAS version 1.1.02, Affymetrix) 
as described in the user manual. DNA methylation information was mapped to 
chromosome position and the methylation score for each binding site was calculated  
by averaging methylation level within extended 500 bp window. 

4.4 Low Nucleosome Density (LND) score 

Genome-wide LND regions were identified using high-resolution ChIP-chip assay 
(Zhang et al., 2007). The raw data of ChIP-chip experiment was downloaded from GEO 
and accession numbers are GSE7062 and GSE7063. Data normalisation and analysis was 
performed using Tilemap (Ji and Wong, 2005) with Hidden Markov model option as 
previously described (Zhang et al., 2006). LND regions were defined as those giving 
higher signal when probed with the input DNA samples than with H3 ChIP-chip DNA 
samples. The LND score for each binding site was calculated by averaging LND level 
within extended 500 bp window. 

4.5 Repeat element region 

Arabidopsis repeat element information was downloaded from MIPS Repeat Element 
Database (http://mips.gsf.de/proj/plant/webapp/recat/). They provide all repeat elements 
mapped to chromosome position. The repeat score for each binding site was calculated by 
checking whether any repeat elements were overlapping within extended 500 bp window. 

4.6 Averaged gene expression level 

Since the samples for ChIP-chip assay were extracted from seed tissue, seed-specific 
microarray data were collected from GEO. Total 37 Arabidopsis ATH1 Genome array 
from 4 different experiments were collected and their accession numbers are GSE14374, 
GSE7227, GSE5687 and GSE5701. Data analysis was performed using Limma package 
(Wettenhall and Smyth, 2004) implemented in the Bioconductor R project 
(http://www.bioconductor.org/). The averaged gene expression score for each binding site 
was calculated by averaging all gene expression intensities within extended 10 kbp 
window. 

4.7 Classification and attribute selection 

As a classification tool, the Weka (Witten and Frank, 2005) and Bioweka (Gewehr et al., 
2007) programme was used. WEKA is a comprehensive workbench for machine learning 
and data mining. The programmes were downloaded from their homepages (http:// 
www.cs.waikato.ac.nz/ml/weka/ and http://bioweka.sourceforge.net/). The classification 
process was conducted in command line batch mode with ten-fold cross-validation 
option. Whereas Random Forest was applied with default parameters, SVM parameters 
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were adjusted to increase classification accuracy with greedy search. Attribute selection 
was performed with CfsSubsetEval/ExhaustiveSearch method. 
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