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ABSTRACT

Motivation: For the early detection of cancer, highly sensitive and
specific biomarkers are needed. Particularly, biomarkers in bio-fluids
are relatively more useful because those can be used for non-biopsy
tests. Although the altered metabolic activities of cancer cells have
been observed in many studies, little is known about metabolic
biomarkers for cancer screening. In this study, a systematic method
is proposed for identifying metabolic biomarkers in urine samples
by selecting candidate biomarkers from altered genome-wide gene
expression signatures of cancer cells. Biomarkers identified by the
present study have increased coherence and robustness because
the significances of biomarkers are validated in both gene expression
profiles and metabolic profiles.
Results: The proposed method was applied to the gene expression
profiles and urine samples of 50 breast cancer patients and 50 normal
persons. Nine altered metabolic pathways were identified from the
breast cancer gene expression signatures. Among these altered
metabolic pathways, four metabolic biomarkers (Homovanillate,
4-hydroxyphenylacetate, 5-hydroxyindoleacetate and urea) were
identified to be different in cancer and normal subjects (p < 0.05).
In the case of the predictive performance, the identified biomarkers
achieved area under the ROC curve values of 0.75, 0.79 and 0.79,
according to a linear discriminate analysis, a random forest classifier
and on a support vector machine, respectively. Finally, biomarkers
which showed consistent significance in pathways’ gene expression
as well as urine samples were identified.
Contact: dhlee@biosoft.kaist.ac.kr
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The altered metabolic activities of cancer cells have been observed
in many studies. It has been reported that most cancer cells
predominantly produce energy by glycolysis in the cytosol (Gatenby
and Gillies, 2004; Kim and Dang, 2006; Moreno-Sanchez et al.,
2007). In addition, it has been shown that cancer cells demonstrate
an increased rate of protein turnover as well as an increase
in lipolysis, which is the breakdown of fat stored in fat cells

∗To whom correspondence should be addressed.

(Al-Majid and Waters, 2008; Argiles et al., 2007; Yeh et al.,
2006). It has also been reported that human colon cells show
deregulation of the TCA cycle and amino acid turnover (Denkert
et al., 2008). Based on the perception of cancer metabolism, groups
of scientists have devoted much effort to the identification of
metabolic biomarkers for non-invasive cancer screening. Recently,
many researchers have identified sensitive cancer biomarkers with
the technical development in mass spectrometry-based metabolomic
studies. Deng et al. (2004) reported hexanal and heptanal in serum
as biomarkers for lung cancer. Philips et al. (2003, 2006) identified
decanes and heptanes for breast cancer in breath samples with
a sensitivity of 88.2% and a specificity of 73.8%. Henneages
et al. (2009) reported 44 pair-wise ratios of RNA metabolites for
breast cancer urinary tests. In addition, Sreekumar et al. (2009)
identified highly increased levels of sarcosine during prostate cancer
progression to metastasis.

Mass spectrometry-based metabolomic biomarker studies can be
categorized into two classes, targeted and untargeted approaches.
In targeted approaches, candidate biomarkers which appear to be
related to cancer specific functions are selected in advance based
on prior knowledge. Once the candidate biomarkers are selected,
candidate biomarkers in mass spectrum data are identified and
the discriminative powers of the candidate biomarkers are tested.
Additionally, in non-targeted approaches, statistical or multivariate
analysis is applied to the aligned mass spectrum data, and biomarkers
which show significant differences between cancer and normal
patients are then identified. However, there remain many difficulties
in the identification of biomarkers in both approaches. In targeted
approaches, if the candidate biomarkers were initially selected
incorrectly, biomarker identification may easily fail, even if there
are potential biomarkers with strong discriminative powers in the
samples (Beckmann et al., 2008). In non-targeted approaches, it is
difficult to identify consistent biomarkers, as metabolic phenotypes
are easily affected by various environmental and lifestyle factors
such as gender, age and diet (Holmes et al., 2008; Li et al., 2008).
In addition, from a statistical point of view, it is difficult to identify
robust biomarkers due to the inherent low sample-to-variable ratio
of mass spectrum data.

It is expected that the development of microarray technologies
and large-scale metabolic pathway structure information can assist
with candidate biomarker selection in targeted approaches. Recently,
gene-set analysis methods for evaluating the activities of biological
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pathways were introduced and applied to metabolic pathways
(Dinu et al., 2007; Subramanian et al., 2005). Gene-set enrichment
analysis (GSEA) is one of the most well-established gene-set
approaches that determines whether an a priori defined set of genes
concordantly shows statistically significant differences between two
phenotypes (Subramanian et al., 2005). However, because there
is typically at least one rate-determining step that determines the
overall activity of a metabolic pathway, not all metabolic genes
of a pathway consistently show significant transcriptional changes
even if the activities of pathway are altered (Hall et al., 2007;
Nakamura et al., 2005). To overcome this limitation, the authors
recently proposed a new scoring method for measuring the altered
activities of metabolic pathways and showed its effectiveness (Nam
et al., 2009).

The present study proposes a systematic method for the
identification of metabolic biomarkers for urinary tests that selects
candidate biomarkers from altered genome-wide gene expression
signatures. Our basic idea is combining gene expression profiles
of cancer cells and metabolomic profiles of urine to identify
coherent urinary biomarkers that originate from cancer cells and
are then excreted in urine. First, in order to identify altered
breast cancer metabolism, we use a computational method that
identifies genome-wide altered metabolic pathways by analyzing
gene expression profiles and predefined functional units of metabolic
pathways in KEGG maps (Nam et al., 2009). This scoring method
observes changed expression levels of metabolic genes that show
significant expression changes in breast cancer compared to normal
subjects. Second, with the identification of the metabolic pathways
to be altered, candidate biomarkers, which are substrates of the
altered metabolism, are selected. Once the candidate biomarkers
are selected, the discriminative powers of the selected candidate
biomarkers are tested with the collected gas chromatography-mass
spectrometry (GC-MS) data of urine samples. Finally, a set of
biomarkers for urinary cancer screening tests is given.

2 MATERIALS AND METHODS
Figure 1 provides an overview of the proposed method. The significance
of a change in the level of genes is extracted by applying t-tests to
microarray data. The transcription factor information of enzymes is merged
with the information of the metabolic pathways. With these two sources
of information, the alteration scores of the pathways are measured. Once
the altered metabolic pathways are identified, the discriminative powers of
candidate biomarkers are evaluated and sets of biomarkers for breast cancer
urinary tests are identified.

2.1 Data sets for identification of altered metabolism
In this work, three different sources of data were used to identify altered
metabolism (see Fig. 1). First, gene expression data sets of breast cancer
and normal subjects obtained from the NCBI GEO database were used
(Table 1). To avoid obtaining biased signatures of a certain histological
type of cancer, we used gene expression data sets consisted of more than
one histological type. Second, the transcriptional regulation information of
Homo Sapiens from the TRANSFAC� database (Matys et al., 2003, 2006)
was used. A total of 364 instances of protein-DNA binding information
were obtained that had explicit regulation annotation terms (e.g. activator,
inhibitor). Last, 112 instances of metabolic pathway information from the
KEGG Pathway database were used (Kanehisa and Goto, 2000; Kanehisa
et al., 2006, 2008).

(a)

(b)

Fig. 1. Method overview. (a) Identification of altered pathways and
candidate biomarkers. Using microarray gene expression profiles, the
standardized z-scores of genes are obtained by t-tests. With the obtained
z-scores and the metabolic pathway information, the alteration scores of
each metabolic pathway were measured. An alteration score of a pathway is
an aggregated form of the expression scores of genes in a pathway that
maximizes the aggregated score. (b) Metabolic biomarker identification.
By evaluating the discriminative power and classification performance of
candidate biomarkers, sets of urinary biomarkers for cancer screening are
reported.

Table 1. Used breast cancer gene expression data sets

Data set (GEO ID) Number of samples
(cancer/normal)

Histological types

GSE3744 40/7 Basal; non-basal;
BRCA1-associated

GSE10810 31/27 Invasive ductal carcinoma;
invasive lobular
carcinoma
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2.2 Urine sample collection
Urine samples were collected from female breast cancer patients at various
cancer stages with a mixture of histological types of invasive ductal
carcinoma (IDC), invasive lobular carcinoma (ILC), ductal carcinoma in
situ (DCIS) (n = 50, age 47.6 ±7.89 years). Samples of healthy subjects as
normal controls (n = 50, age 46.64± 7.38 year) were collected at the Samsung
and Hanyang University Medical Centers (Seoul, Korea). All study subjects
underwent the same diagnostic procedures, i.e. a physical breast examination,
a mammography, and ultrasonography as detailed by the American Joint
Committee on Cancer Staging. Additionally, none of the subjects had
undergone chemotherapy. The normal sex- and age-matched controls had no
evidence of benign or malignant breast disease. Detailed clinical information
pertaining to the 50 cancer patients are listed in Supplementary Table 1 in
Supplementary Appendix 1.

2.3 Sample preparation for GC-MS analysis
Urinary metabolites were prepared under four different conditions. In the
first condition, a urine sample (1 ml) was loaded into Strata-X cartridge
(60 mg, 3 ml; Phenomenox, Torrance, CA), washed with distilled water (1 ml)
and extracted with 4 ml of methanol. The eluant was divided into halves.
One half of the eluant (2 ml) was evaporated and dried in a desiccator
over 30 min. In the second condition, the other half was evaporated and
dissolved with 1 ml of 0.2 M acetate buffer (pH 5.2) and hydrolyzed
with β-glucuronidase/arylsufatase (50 µl) from Helix Pomatia (Roche,
Mannheim, Germany) at 55◦C for 3 h. After cooling, urinary metabolites
were extracted with 5 ml of diethyl ether by mechanical shaking for 20 min
and centrifugation at 2500 rpm for 5 min. The separated organic layer was
evaporated under nitrogen and kept in the desiccator for 30 min. In the third
condition, the remaining aqueous layer had 200 µl of 3 M HCl added to
it to adjust it to a pH range of 1–2. It was then extracted with 5 ml of
diethyl ether. The separated organic extract was evaporated and dried. In
the fourth condition, the remaining aqueous layer had 0.73 g of K2CO3

added to it to adjust it to a pH range of 10–11. It was then extracted with
5 ml of diethyl ether and dried. All dried extracts were derivatized by 50 µl
of MSTFA/TMSI/TMCS (100:2:5, v/v/v) mixture at 60◦C for 15 min and
injected into a GC-MS system.

2.4 Instrumental conditions
All samples prepared were separated through a Ultra-1 capillary column
(25 m×0.2 mm ID, 0.33 µm film thickness; Agilent, Palo Alto, CA) and
analyzed by Thermo Finnigan GC-MS systems that consisted of a model
Trace 2000 GC and Polaris Q mass-selective detector in a scan range of
m/z 50–800 (Thermo Finnigan, Waltham, MA).

2.5 Quantification of target metabolites
The intensities of the metabolites in the urine samples were quantified via
AMDIS 2.6 (Automated Mass Spectral Deconvolution and Identification
System) (Stein, 1999) and reference libraries (NIST 02 and Wiley 7
MS libraries). Once the intensities of candidate metabolic markers were
quantified, the intensities of a candidate marker were aligned across all
samples (both 50 cancer and 50 normal samples). Finally candidate markers
that were missing no more than 25% of their values were selected. After
the alignment, the missing values of the intensities were input using the knn
imputation function, which is implemented in the R ‘impute’ package.

2.6 Identifying altered metabolic pathways
To calculate the alteration levels of a metabolic pathway, the significance of
the differential expression of each gene under cancer was initially measured.
To do this, the Student’s t-test was used to evaluate the significance of
the change of a gene. The obtained P-value (pi) of each gene (genei) was
converted to a z-score (zi) using the inverse normal cumulative distribution
function (θ−1). A z-score follows a standard normal distribution, and a higher

z-score indicates more significantly induced or reduced gene expression in
cancer.

zi =θ−1(1−pi)

A pre-published scoring method by the authors was then applied to measure
the altered activities of the metabolic pathways to the breast cancer gene
expression data set. Details of this method for identifying altered metabolic
pathways are explained in the Supplementary Material.

2.7 Classification evaluation
To evaluate the predictive performance of the identified biomarkers,
supervised machine learning classification techniques were used. These
techniques involved the use of three classification algorithms implemented
in R packages: a linear discriminative analysis (LDA), the random forest
classifier (RF) and the support vector machine (SVM). The data set was
first randomly split onto training and testing sets. Five-fold cross validation
was performed on the training set and the generalization was obtained
on an unseen testing set. Five-fold cross validation was repeated 1000
times to generalize the performance of the classifier. The final classification
performance is reported as the averaged values of the area under the ROC
curve (AUC) on the test set. To test the performance of multiple biomarkers,
the biomarkers were initially ranked according to their AUC values, and
every classifier was then built by adding a biomarker serially in decreasing
order of the AUC value.

3 RESULTS

3.1 Identified altered metabolism and hallmarks of
cancer metabolism

The proposed method was applied to two breast cancer gene
expression profiles (Table 1). From each data set, 14 and 25
metabolic pathways were identified to be altered in GSE3744,
GSE10810, respectively (Fig. 2a). To avoid obtaining biased
signatures of a certain histological type of cancer, pathways which
are commonly identified in both expression data sets are selected
for further analysis (Fig. 2b). The genes and their corresponding
reactions which maximized the alteration score in each pathway are
fully listed in Supplementary Table 1 in Supplementary Appendix 2.
Table 2 lists the altered metabolic pathways in the results. Nine
altered metabolic pathways were commonly identified from the two
breast cancer gene expression data sets. It should be noted that some
correspondence exists between the present findings and previously
known cancer hallmarks. It has been reported that the activity of the
pyrimidine biosynthetic pathway in MCF7 breast cancer cells was
4.4-fold higher than that in normal MCF10A breast cells (Sigoillot
et al., 2004). In the case of tyrosine metabolism, it was reported
that the signal transducer and activator of transcription 3 (Stat3) is
constitutively tyrosine-phosphorylated in ∼50% of primary breast
carcinomas (Berishaj et al., 2007). It has also been shown that the
plasma levels of total tryptophan were significantly lower in patients
with breast cancer than in women with benign breast cancer (Poulter
et al., 1985).

3.2 Comparative analysis of candidate metabolic
biomarkers from altered metabolism

Based on the nine identified metabolic pathways to be altered,
candidate biomarkers which are substrates of the altered pathways
were selected. When selecting the candidates, the metabolites
having the standard mass peaks of derivatives in a reference
library (NIST 02 and Wiley 7 MS libraries) were chosen for the
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Fig. 2. Results from two gene expression data sets. (a) The number of
significantly altered metabolic pathways identified by the proposed method
(FDR ≤5%). (b) Venn diagram of overlap between identified altered
pathways. The figure shows the overlap between the altered pathways for
both data sets.

Table 2. Identified metabolic pathways as altered in two breast cancer gene
expression data sets (FDR ≤0.05)

Name Alteration type Number of
genes

Pyrimidine metabolism Activated 90
Purine metabolism Activated 146
Valine, leucine and

isoleucine degradation
Repressed 46

Tyrosine metabolism Repressed 48
Arachidonic acid metabolism Repressed 59
Metabolism of xenobiotics

by cytochrome P450
Repressed 60

Butanoate metabolism Repressed 38
Tryptophan metabolism Repressed 50
Fatty acid metabolism Repressed 44

peak matching tests with the urine samples. The total number
of candidate metabolic biomarkers in breast cancer is 128 (see
Supplementary Table 2 in Supplementary Appendix 1). Once
the candidate biomarkers were selected, the mass peaks of the
candidate biomarkers in the GC-MS data were identified with
AMDIS 2.6 software. During the peak detection, metabolites that
did not match the quality criteria underlying the peak detection
algorithm at a given sample are resulted in missing quantified
values. In the present study, we took into account metabolites those
were consistently detected in at least 75% of samples in order to
maximize the quality of urine profiles. Finally, the intensities of
15 metabolites for breast cancer were quantified across 100 urine
samples (see Supplementary Table 3 in Supplementary Appendix
1). The sums of the peak areas of the urine samples of 50
breast cancer patients and 50 normal samples were analyzed. The
differences in the intensities of the candidate biomarkers were then
compared between cancer and normal groups in a two-tailed t-test,
and six metabolic biomarkers (hippurate, homovanillate, benzoate,
4-hydroxyphenylacetate, 5-hydroxyindoleacetate and urea) were
finally determined to be different (P < 0.05) (see Fig. 3, and

Fig. 3. Four selected breast cancer biomarkers in urine samples. (a)
Box-whisker plots intensities of selected biomarkers in the urine samples
(P < 0.05), (b) The detailed information of the selected biomarkers.

Supplementary Figs 1–4 in Supplementary Appendix 2). In next
section, the predictive performance of selected four biomarkers is
evaluated.

3.3 Classification of cancer versus normal with selected
biomarkers

The urine samples consisted of 50 cancer samples and 50 normal
samples, and the data was randomly split into 40 samples of training
and 10 samples of testing sets for each phenotype. For an 80:20 train-
test set, 5-fold cross validation was performed on the training set,
and the generalization was obtained on an unseen testing set. The
final classification performance is reported as the averaged AUC
values on the test set for each classifier.

Figure 4 shows the classification performance of the selected
biomarkers with the three classifiers. The performance of each
selected biomarker was tested first, and the combinatorial effect
of multiple biomarkers was then tested. To test the performance of
multiple biomarkers, the biomarkers were initially ranked according
to their AUC values. Each classifier was then formulated by adding a
biomarker serially in decreasing order of itsAUC value.As the figure
shows, the multiple biomarkers achieved better classification results
compared to single biomarkers across the three classifiers (Fig. 4a–
c). For example, multiple biomarkers achieved a highest AUC value
of 0.75 with LDA, whereas a single biomarker achieved the highest
AUC value of 0.74. Sets of multiple biomarkers which achieved the
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Fig. 4. The classification performance of LDA, RF and SVM with
the four selected biomarkers: (a–c) The bar in each plot indicates the
mean and the standard error of the mean (SEM) of the AUC value
for each single biomarker. Biomarkers are ranked in decreasing order
of their AUC values on the x-axis. The line in each plot indicates
the mean and the SEM of the AUC values of accumulated multiple
biomarkers. (d) Accuracy, sensitivity, specificity rates of multiple biomarkers
at the highest AUC value [accuracy = (TP + TN)/(TP + FP + FN + TN),
sensitivity = TP/(TP + FN), specificity = TN/(FP + TN)].

best performance showed AUC values of 0.75, 0.79 and 0.79 with
LDA, Random forest, SVM, respectively. Accuracy, sensitivity and
specificity rates of multiple biomarkers were measured when sets
of multiple biomarkers achieve the highest AUC value (Fig. 4d).
Sensitivity is a rate of cancers that are correctly identified as cancer.
Specificity is a rate of normal that are correctly identified as normal.
As the figure shows, identified biomarkers showed better sensitivity
rates than specificity rates across all three classifiers. As screening
test is intended to have a high sensitivity, it is important to compare
the sensitivity performance of the identified urine markers and
mammography which is one of the standards for breast cancer
screening tests. According to previous researches, the sensitivity
of mammography is reported as around 70–80% (Houssami et al.,
2002; Jensen et al., 2006). The identified biomarkers showed similar
sensitivity performance compared to mammography. However the
urinary test with the biomarkers could be more beneficial because
mammography has potential risk of radiation exposure. This result
shows that the identified metabolic biomarkers that originate from
gene expression signatures have discriminative power for a urinary
test in the screening of cancer patients.

4 DISCUSSION

4.1 Correlation between candidate biomarkers and
cancer progression

To determine whether the candidate markers can be indices of cancer
progression, the correlations between the intensities of a candidate
marker and the cancer stages were evaluated. First, the averages
of the intensities of a candidate marker in each cancer stages were
calculated. Subsequently, the Pearson’s correlation coefficient of a
candidate marker was estimated against the progression of the cancer
(see Supplementary Table 4 in Supplementary Appendix 1). The
results show that among 15 candidate biomarkers, thymine levels
showed a correlation with cancer progression (Pearson’s correlation
coefficient: 0.852). The thymine levels across cancer progression are
depicted in Figure 5.

4.2 The origin of identified biomarkers
To ensure that the identified urinary metabolic biomarkers originated
from breast cancer cells, it is necessary to confirm whether the
biomarkers could be secreted to blood from cancer cells and then
excreted in urine. Therefore, the biofluid locations of the identified
biomarkers were checked by referring to the Human Metabolome
Database (HMDB) (Wishart et al., 2007). Table 3 shows a detailed
description of the identified biomarkers and their biofluid location
information. As the tables shows, all identified biomarkers except
benzoate are identified in both blood and urine biofluid. Therefore,
this result is evidence that the altered metabolic signatures of cancer
cells can assist with the identification of urinary biomarkers.

5 CONCLUSION
The present study proposes a systematic method for the identification
of metabolic biomarkers for urinary tests that selects candidate
biomarkers from altered genome-wide gene expression signatures.
Altered metabolic signatures of breast cancer were identified
through statistical tests using gene expression and KEGG metabolic
pathways. Once the altered metabolic pathways are selected, the
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Fig. 5. The intensities of thymine across cancer progression: The x-axis
indicates cancer stages. The bar denotes the average and the SEM of
intensities.

Table 3. Four identified biomarkers and their biofluid location information

Marker Biofluid location

Homovanillate Blood, cerebrospinal fluid, urine
4-Hydroxyphenylacetate Blood, cerebrospinal fluid, urine; saliva
5-Hydroxyindoleacetate Blood, cerebrospinal fluid, urine
Urea Blood, cellular cytoplasm, cerebrospinal

fluid, Urine

discriminative powers of selected candidate biomarkers are tested
with the collected gas chromatography-mass spectrometry (GC-MS)
data of urine samples. The proposed method was applied to the gene
expression profiles and urine samples of breast cancer patients and
normal persons. Nine altered metabolic pathways were identified
from the breast cancer gene expression signatures. Finally, four
metabolic biomarkers (Homovanillate, 4-hydroxyphenylacetate,
5-hydroxyindoleacetate and urea) were identified to be different
in cancer and normal subjects (P < 0.05). In the present study, we
proposed a systematic method for the identification of metabolic
biomarkers for urinary tests that selects candidate biomarkers from
altered genome-wide gene expression signatures. To avoid obtaining
biased signatures of a certain histological type of cancer, we used
gene expression data sets consisted of various histological type.
Also, in order to find out biomarkers that are not bias to specific
patients, we used the urine and gene expression data from different
cohort sets. We expect that the identified biomarkers by our method
are more coherent and robust compared to biomarkers identified by
conventional mass spectrometry-based metabolomic studies because
the biomarkers’ significances are validated in two independent data
sets.
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