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ABSTRACT

Motivation: Clustering technique is used to find groups of genes that

show similar expression patterns under multiple experimental con-

ditions. Nonetheless, the results obtained by cluster analysis are influ-

enced by the existence of missing values that commonly arise in

microarray experiments. Because a clustering method requires a

complete data matrix as an input, previous studies have estimated

the missing values using an imputation method in the preprocessing

step of clustering. However, a common limitation of these conventional

approaches is that once the estimates of missing values are fixed in the

preprocessingstep, theyarenotchangedduringsubsequentprocesses

of clustering; badly estimated missing values obtained in data prepro-

cessing are likely to deteriorate the quality and reliability of clustering

results. Thus, anewclusteringmethod is required for improvingmissing

values during iterative clustering process.

Results: We present a method for Clustering Incomplete data using

Alternating Optimization (CIAO) in which a prior imputation method is

not required. To reduce the influenceof imputation in preprocessing,we

takeanalternativeoptimizationapproach to findbetter estimatesduring

iterative clustering process. This method improves the estimates of

missing values by exploiting the cluster information such as cluster

centroids and all available non-missing values in each iteration. To

test the performance of the CIAO, we applied the CIAO and conven-

tional imputation-based clustering methods, e.g. k-means based on

KNNimpute, for clustering two yeast incomplete data sets, and com-

pared the clustering result of each method using the Saccharomyces

Genome Database annotations. The clustering results of the CIAO

method are more significantly relevant to the biological gene annota-

tions than those of other methods, indicating its effectiveness and

potential for clustering incomplete gene expression data.

Availability: The software was developed using Java language, and

can be executed on the platforms that JVM (Java Virtual Machine) is

running. It is available from the authors upon request.

Contact: dwkim@cau.ac.kr

1 INTRODUCTION

DNA microarray technology has allowed for the monitoring of

the transcript abundance of thousands of genes in parallel under a

variety of conditions. Since the diauxic shift (DeRisi et al., 1997),
sporulation (Chu et al., 1998), and the cell cycle (Cho et al., 1998)

in the yeast Saccharomyces cerevisiae were explored, many

experiments have been analyzed by various methods to monitor

the gene expression levels of various organisms during some bio-

logical process. Of the analysis methods proposed to date, clustering

has emerged as one of themost popular techniques. Since Eisen et al.
(1998) first used the hierarchical clustering method to find groups of

coexpressed genes, numerous methods have been studied for clus-

tering gene expression data: self-organizing map (Tamayo et al.,
1999), k-means clustering (Tavazoie et al., 1999), simulated anneal-

ing (Luckshin and Fuchs, 2001), graph-theoretic approach (Xu et al.,
2001), mutual information approach (Steuer et al., 2002), fuzzy c-
means clustering (Dembele and Kastner, 2003), kernel hierarchical

clustering (Qin et al., 2003), diametrical clustering (Dhilon et al.,
2003), quantum clustering with singular value decomposition (Horn

and Axel, 2003), bagged clustering (Dudoit and Fridlyand, 2003),

CLICK (Sharan et al., 2003) and GK (Kim et al., 2005).
However, the analysis results obtained by clustering methods will

be influenced by missing values in microarray experiments, and thus

it is not always possible to correctly analyze the clustering results

due to the incompleteness of data sets. The problem of missing

values have various causes, including dust or scratches on the

slide, image corruption and spotting problems (Troyanskaya

et al., 2001; Bo et al., 2004). Ouyang et al. (2004) pointed out

that most of the microarray experiments contain some missing

entries and >90 % of rows (genes) are affected.

To convert incomplete microarray experiments to a complete data

matrix that is required as an input for a clustering method, we must

handle the missing values before calculating clustering. To this

end, typically we have either removed the genes with missing

values or estimated the missing values using an imputation prior

to cluster analysis. Of the methods proposed to date, several

imputation methods have been demonstrating their effectiveness

in building the complete matrix of clustering: missing values are

replaced by zeros (Alizadeh et al., 2000) or by the average ex-

pression value over the row (gene). Troyanskaya et al. (2001)

presented two correlation-based imputation methods: a singular-

value-decomposition-based method (SVDimpute) and weighted

K-nearest neighbors (KNNimpute). Besides, a classical expecta-

tion maximization approach (EMimpute) exploits the maximum

likelihood of the covariance of the data for estimating the missing

values (Bo et al., 2004; Ouyang et al., 2004).
However, a common limitation of existing approaches for clus-

tering incomplete microarray data is that the estimation of missing�To whom correspondence should be addressed.
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values must be calculated in the preprocessing step of clustering.

Once the estimates are found, they are not changed during the

subsequent steps of clustering. Thus badly estimated missing values

during data preprocessing can deteriorate the quality and reliability

of clustering results, and therefore drive the clustering method to

fall into a local minimum; it prevents missing values from being

imputed by better estimates during the iterative clustering process.

To minimize the influence of bad imputation, in the present study

we developed a CIAO (Clustering Incomplete data using Alterna-

ting Optimization) method for clustering incomplete microarray

data, which iteratively finds better estimates of missing values

during clustering process. An incomplete gene expression data

set is used as an input without any prior imputation. This method

preserves the uncertainty inherent in the missing values for longer

before final decisions are made, and is therefore less prone to fall

into local optima in comparison to conventional imputation-based

clustering methods. To achieve this, a method for measuring the

distance between a cluster centroid and an incomplete row (a gene

withmissing values) is proposed, along with a method for estimating

the missing attributes using all available information in each itera-

tion. The remainder of this paper is organized as follows: Section 2

describes the formulation of the CIAO method; Section 3 highlights

the potential of the CIAO method through several tests on the

yeast data sets; and Section 4 presents our concluding remarks.

2 METHOD

The objective of the CIAO method is to classify a set of data points

X ¼ {x1, x2, . . . , xn} in a p dimensional space into k disjoint and homo-

geneous clusters represented as C ¼ {C1,C2, . . . ,Ck}. Here each data point

xj ¼ ½xj1‚xj2‚ . . . ‚xjp� ð1 � j � nÞ is the expression vector of the j-th gene

over p different environmental conditions or samples. A data point with

some missing conditions or samples is referred to as an incomplete gene; a

gene xj is incomplete if xjl is missing for 91 � l � p, i.e. an incomplete gene

x1 ¼ [0.75,0.73,?,0.21] where x13 is missing. A gene expression data set X is

referred to as an incomplete data set if X contains at least one incomplete

gene expression vector.

To find better estimates of missing values and improve the clustering

result during iterative clustering process, in each iteration we exploit the

information of current clusters such as cluster centroids and all available

non-missing values. For example, a missing value xjl is estimated using the

corresponding l-th attribute value of the cluster centroid to which xj is closest

in each iteration. To improve the estimates during each iteration, the pro-

posed method attempts to optimize the objective function with respect to the

missing values, which is often referred to as the alternating optimization

(AO) scheme. The objective of the proposed method is obtained by

minimizing the function Jm:

min JmðU‚VÞ ¼
Xk
i¼1

Xn
j¼1
ðmijÞ

mDij

)(
ð1Þ

where

Dij ¼ kxj � vik2 ð2Þ

is the distance between xj and vij,

V ¼ ½v1‚v2‚ . . . ‚vk� ð3Þ

is a vector of the centroids of the clusters C1,C2, . . . ,Ck,

U ¼ ½mij� ¼

m11 m12 . . . m1n

m21 m22 . . . m2n

..

. ..
. ..

. ..
.

mk1 mk2 . . . mkn

2
6664

3
7775 ð4Þ

is a fuzzy partition matrix of X satisfying the following constraints,

mij 2 ½0‚1�‚ 1 � i � k‚ 1 � j � n‚

Xk
i¼1

mij ¼ 1‚ 1 � j � n‚ ð5Þ

0 <
Xn
j¼1

mij < n‚ 1 � i � k:

and

m 2 ½1‚1Þ ð6Þ

is a weighting exponent that controls the membership degree mij of each

data point xj to the cluster Ci. As m! 1, J1 produces a hard partition where

mij 2 {0,1}. As m approaches infinity, J1 produces a maximum fuzzy

partition where mij ¼ 1/k. This fuzzy k-means-type approach has advantages

of differentiating how closely a gene belongs to each cluster (Dembele and

Kastner, 2003) and being robust to the noise in microarray data (Futschik,

2003) because it makes soft decisions in each iteration through the use of

membership functions.

Under this formulation, missing values are regarded as optimization

parameters over which the functional Jm is minimized. To obtain a feasible

solution by minimizing Equation (1), the distanceDij between an incomplete

gene xj and a cluster centroid vi must be calculated as:

Dij ¼
pPp

l¼1
vjl

Xp
l¼1
ðxjl�vilÞ2vjl ð7Þ

where

vjl ¼
1 if xjl is non-missing

1 � exp ð � t/tÞ if xjl is missing

�
ð8Þ

We differentiate the missing attribute values from the non-missing values

in calculating Dij. The fraction part in Equation (7) indicates that Dij is

inversely proportional to the number of non-missing attributes used

where p is the number of attributes. vjl indicates the confidence degree

with which l-th attribute of xj contributes to Dij; specifically, vjl ¼ 1 if

xjl is non-missing and 0 � vjl < 1 otherwise. The exponential decay,

exp(�t/t), represents the reciprocal of the influence of the missing attribute

xjl on discrete time twhere t is a time constant. At the initial iteration (t¼ 0),

wjl has a value of 0. As time t (i.e. the number of iterations) increases, the

exponent part decreases fast, and thus wjl approaches 1. Let us consider an

incomplete data point x1 ¼ [0.75,0.73,?,0.21] where initially x13 is missing.

Suppose that x13 is estimated as a value of 0.52 after two iterations; then x1
has a vector of [0.75,0.73,0.52,0.21]. From this vector, we see that x13
participates in calculating the distance to cluster centroids less than the

other three values because it is now being estimated. Besides, the influence

of x13 to Di1 is increased as the iteration continues because its estimate is

improved by an iterative optimization.

UsingDij in Equation (7) the saddle point of Jm is obtained by considering

the constraint Equation (5) as the Lagrange multipliers:

rJmðU‚V‚lÞ

¼
Xk
i¼1

Xn
j¼1
ðmijÞ

mDij þ
Xn
j¼1

lj
Xk
i¼1

mij � 1

" #
ð9Þ

and by setting r Jm ¼ 0. If Dij > 0 for all i, j and m > 1, then (U,V) may

minimize Jm only if,

mij ¼
Xk
z¼1

Dij

Diz

� �2/ðm�1Þ
" #�1

‚ ð10Þ

1 � i � k; 1 � j � n
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and

vi ¼
Pn

j¼1 ðmijÞ
mxjPn

j¼1 ðmijÞ
m ‚ 1 � i � k: ð11Þ

This solution also satisfies the remaining constraints of Equation (5). Along

with the optimization of the cluster centroids and membership degrees

in Equations (10) and (11), missing values are optimized during each

iteration to minimize the functional Jm. In this study, we optimize the

missing values by minimizing the function J(xj) presented by Hathaway

and Bezdek (2001):

JðxjÞ ¼
Xk
i¼1
ðmijÞ

mkxj�vik2A ð12Þ

By settingr J¼ 0 with respect to the missing attributes of xj, a missing value

xjl is calculated as:

xjl ¼
Pk

i¼1 ðmijÞ
mvilPk

i¼1 ðmijÞ
m

‚ 1 � i � k: ð13Þ

By Equation (13), xjl is estimated by the weighted mean of all cluster

centroids in each iteration. At the initial iteration, xjl is initialized with the

corresponding attribute of the cluster centroid to which xj has the highest

membership degree.

Algorithm 1. The CIAO Method

Given incomplete microarray data X ¼ {x1, . . . , xn}, xj 2 Rp, the
number of clusters (k), the weighting exponent (m), and the ter-
mination criterion («), this method finds k disjoint and homogeneous
clusters.

(1) Initialize Ut ¼ ½mðtÞij � (initially, t  0) of xj belonging to cluster Ci

for 1 � i � k, 1 � j � n such that
Pk

i¼1 mij ¼ 1:0. Choose the initial

values for cluster centroids V0 and missing attributes.

(2) Compute the distances between xj and v
ðtÞ
i for 1� i� k, 1� j� n using:

Dij ¼
pPp

l¼1 vjl

Xp
l¼1
ðxjl�vilÞ2vjl

where

vjl ¼
1 if xjl is non-missing

1 � exp ð � t/tÞ if xjl is missing:

�

(3) Update Ut+1 by the following procedure. For each xj, 1� j � n,

(a) if Djj > 0, 1 � i � k, then update the membership of xj at t + 1 by:

m
ðtþ1Þ
ij ¼

Xk
z¼1
ðDij

Diz
Þ2 /ðm�1Þ

" #�1
‚

(b) ifDij¼ 0 for some i2 I� 1, . . . , k, then for all i2 I, setmðtþ1Þij to be

between [0,1] such that:P
i2I m

ðtþ1Þ
ij ¼ 1‚and

set m
ðtþ1Þ
ij ¼ 0 for other i =2 I:

(4) Update the centroids Vtþ1 ¼ ½vðtþ1Þ1 ‚ . . . ‚v
ðtþ1Þ
k � for 1 � i � k using:

v
ðtþ1Þ
i ¼

Pn
j¼1 ðm

ðtþ1Þ
ij ÞmxjPn

j¼1 ðm
ðtþ1Þ
ij Þm

:

(5) Update the estimates of missing attributes in xjl, 1 � l � p using:

x
ðtþ1Þ
jl ¼

Pk
i¼1 ðm

ðtþ1Þ
ij Þmvðtþ1ÞilPk

i¼1 ðm
ðtþ1Þ
ij Þm

‚ 1 � i � k:

(6) If kVt+1 � Vt k� «, then stop; otherwise, t t + 1 and go to Step 2.

Algorithm 1 shows the procedural steps of the CIAO method for clus-

tering n · p gene expression data where n is the number of genes and p is the

number of experiments (attributes). This method iteratively improves

a sequence of sets of clusters until no further improvement in Jm(U,V) is

possible. It loops through the estimates for Vt!Utþ1!Vtþ1 and terminates

on kVtþ1 � Vt k � «. Equivalently, the initialization of the algorithm can be

done on U0, and the iterates become Ut!Vtþ1!Utþ1, with the termination

criterion kUtþ1 � Utk � «. This way of alternating optimization using

membership computation makes the present method be less prone to fall

into local minima than conventional clustering methods.

THEOREM 1. The CIAO method given in Algorithm 1 converges in
a finite number of iterations.

PROOF. We first show that a saddle point of Jm appears at most
once by the CIAO method before it stops. Suppose that this is not
true, i.e., Ut1 ¼ Ut2 for some t1 and t2 where t1 6¼ t2. By the alter-
nating optimization scheme, we get Vt1þ1 and Vt2þ1 as optimal
solutions for U ¼ Ut1 and U ¼ Ut2 , respectively. Therefore, we
have

JmðUt1 ‚Vt1þ1Þ ¼ JmðUt2 ‚Vt1þ1Þ ðsince Ut1 ¼ Ut2 Þ

¼ JmðUt2 ‚Vt2þ1Þ ð14Þ

However, the sequence Jm(ƒ,ƒ) generated by the CIAO method is strictly

decreasing (Selim and Ismail, 1984). Hence Equation (14) is false and

Ut1 6¼ Ut2 . Since there are a finite number of saddle points of Jm (Selim
and Ismail, 1984), hence the algorithm will converge in a finite number of

iterations.

A similar proof concerning the convergence of the k-means-type

algorithms to a local minimum has been stated by Selim and Ismail 1984.

3 RESULTS

3.1. Data sets and implementation parameters

To test the effectiveness with which the CIAO clusters incomplete

microarray data, we applied the CIAO and conventional imputation-

based clustering methods to two published yeast data sets and com-

pared the performance of each method.

The data sets employed were the yeast cell-cycle data set of

Cho et al. (1998) and the yeast sporulation data set of Cho et al.
(1998). The Cho data set contains the expression profiles of

6200 yeast genes measured at 17 time points over two complete

cell cycles. We used the same selection of 2945 genes made by

Tavazoie et al. (1999) in which the data for two time points (90 and

100 min) were removed. The Chu data set consists of the expression

levels of the yeast genes measured at seven time points during

sporulation. Of the 6116 gene expressions analyzed by Eisen

et al. (1998), 3020 significant genes obtained through 2-fold change
were used. These three data sets were preprocessed for the test by

randomly removing 5–25% of the data in order to create incomplete

matrices.

To cluster these incomplete data sets with conventional methods,

we first estimated the missing values using the widely used

KNNimpute (Troyanskaya et al., 2001) and EMimpute (Bo et al.,
2004; Ouyang et al., 2004). For the estimated matrices yielded by

each imputation method, we used CLUST 3.0 (Eisen et al., 1998)
software that implements many clustering methods, of which we

investigated the results of the k-meansmethod. In these experiments,

the parameters used in the CIAO were « ¼ 0.001, and m, t values

were variously tested. The KNNimpute was tested with K¼ 20; this

Clustering of incomplete data without imputation
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value was chosen because it has been overwhelmingly favored in

previous studies (Troyanskaya et al., 2001).
The choice of the number of clusters are of importance in cluster

analysis. However, the problem of the automatic determination of

the optimal number of clusters still remains as a hard issue. In the

tests reported here, we analyzed the performance of each approach

with the number of clusters of k ¼ 5, which has been widely used

in the two yeast data sets; for the cell-cycle data set, the number

of clusters was set to be k ¼ 5 in many studies (Cho et al. 1998;
Yeung et al., 2001; Gibbons and Roth 2002). For the sporulation

data set, the number of clusters was reported around five (Chu et al.,
1998; Datta and Datta, 2003).

3.2 Comparison of clustering performance

To show the performance of an imputation, most of the imputation

methods proposed to date, including KNNimpute and EMimpute,

have examined the root mean squared error (RMSE) between

the true values and the imputed values. However, as Bo et al.
(2004) pointed out, the RMSE is limited to the study the impact

of missing value imputation on cluster analysis. To make this study

more informative regarding how large an impact the imputation

method has on cluster analysis, in the present work the clustering

results obtained using the alternative imputations were evaluated by

comparing gene annotations using the z-score (Gibbons and Roth,

2002; Bo et al., 2004). Besides, we analyzed the cluster qualities

using the figure of merit (FOM) for an internal validation (Yeung

et al., 2001).
The z-score (Gibbons and Roth, 2002) is calculated by investi-

gating the relationship between clusters produced and the known

attributes of the genes in those clusters. To achieve this, this score

uses the Saccharomyces Genome Database (SGD) annotation of the

yeast genes, along with the gene ontology developed by the Gene

Ontology Consortium (Ashburner et al., 2000; Issel et al., 2002).
The computation of z-score is based on mutual information between

a clustering result and the SGD gene annotation; indicating rela-

tionships between clustering and annotation. A higher score of

z represents that the corresponding clustering result is better than

random; genes are better clustered by function, indicating a more

biologically significant clustering result.

The FOM of Yeung et al. (2001) estimates the predictive power

of a clustering method based on the jackknife approach Yeung et al.,
(2001). The method measures the root mean square deviation in the

left-out condition of the individual gene expression level relative to

their within-cluster means. As each condition is used as the valida-

tion condition, it calculates the sum of FOMs over all the conditions.

Meaningful clusters exhibit less variation in the remaining condi-

tions than clusters formed by random. Thus, a lower value of FOM

represents a well-clustered result, representing that a clustering

method has high predictive power.

Figure 1 shows the average z-scores achieved by the imputation-

based k-means and CIAO methods over 30 runs for the yeast sporu-

lation and cell-cycle data sets. The z-scores of the three methods are

plotted with respect to the percentages of missing values (0–25%).

The number of neighbors in the KNNimpute was K ¼ 20, and the

parameters of CIAO were m ¼ 3.0 and t ¼ 100. For the sporulation

data set, the k-means method using KNNimpute gave z-scores
from 8.5 to 50.9. The z-scores of the EMimpute-based k-means

method were ranged from 38.9 to 50.7. Compared to these methods,

the CIAO method provided better clustering performance for all

missing values; the z-scores were varied from 48.6 to 55.1 and the

standard deviation were ranged from 4 to 7. At no missing value

(0%), it was observed that the three methods showed similar z-
scores. For the cell-cycle data set, the CIAOmethod provided better

clustering performance than other methods at low missing values,

giving z ¼ 44.2 at 5% and z ¼ 43.6 at 10%. Interestingly, at 0%

missing value, we see that CIAO gives better z-score than other

imputation-based methods, which is explained in Figure 2. The best

z-scores of KNNimpute and EMimpute-based k-means methods

were z ¼ 44.3 and z ¼ 42.9, respectively.

Figure 2 shows the comparison of average z-scores of CIAO

method over 30 runs for different m values. The CIAO method

uses m to control the membership degree mij of each datum xj to
the clusterCi. Although the choice ofm is of importance in the fuzzy

cluster analysis, there is no general agreement on what value to use

for the optimal m except for the attempt of Dembele and Kastner

(2003). In this study we empirically tested various m values and

reported their influence on the clustering results. Figure 2A shows

the clustering performance of CIAO for five m ¼ 1.1, 1.5, 2.0, 2.5

and 3.0 values for the sporulation data. Of m values considered,

CIAO gave the best z-scores at m ¼ 3.0; it provided more stable

performance over the percentage of missing values than other

choices. The CIAO with m ¼ 1.5 showed the most ineffective

performance. For the cell-cycle data (Figure 2(B)), we see that

CIAO with m ¼ 3.0 also gave the most stable clustering perfor-

mance. Similar clustering results were obtained at m ¼ 1.1, 1.5 and

2.0. In addition, we observe that CIAO with different m values

57

47z

37

45

42z

39

0% 5% 10%

Missing value (%)

A

B

15% 25%

0% 5% 10%

Missing value (%)

15% 25%

KNNimpute+K–means
EMimpute+K–means
CIAO (m=3.0, T=100)

KNNimpute+K–means
EMimpute+K–means
CIAO (m=3.0, T=100)

Fig. 1. Comparison of the clustering performance of the imputation-based

clustering methods and CIAO for two yeast data sets: (A) Comparison of

z-scores for the yeast sporulation data set of Chu et al. (1998). (B)Comparison

of z-scores for the yeast cell-cycle data set of Cho et al. (1998). The k-means

method was tested on the data obtained by KNNimpute and EMimpute. The

horizontal axis represents the percentages of missing values given, the ver-

tical axis represents the z-score.

D.-W.Kim et al.

110



yielded different z-scores at 0% missing value; it showed better

performance with m ¼ 2.5 and 3.0 than with other m values.

This explains why CIAO in Figure 1 showed better z-scores at

0% missing than the imputation-based k-means methods did.

From the result of Figure 2, we see that the choice of m ¼ 3.0

shows more stable performance compared with other m values.

Moreover, we tested the performance of CIAO for two values

(m ¼ 5.0 and 10.0) in order to investigate the clustering result of

CIAO with m > 3. Compared with the case of m ¼ 3.0, the CIAO

with m ¼ 5.0, 10.0 showed similar performance results for the

sporulation and cell-cycle data sets. For the sporulation data set,

CIAO gave z-scores from 48 to 54 over both m ¼ 5.0 and 10.0. For

the cell-cycle data set, CIAO yielded z-scores from 37 to 45 over

both m values.

Besides the issue of m, CIAO has another parameter, t, a time

constant. We investigated the influence of the choice of t on the

clustering results in Figure 3. For the sporulation data (Figure 3(A)),

CIAO with different t ¼ 10, 50, 100 and 500 values showed similar

performances over 5–15% missing values. At 0% missing, the best

z-score was obtained at t ¼ 50 whereas the CIAO with t ¼ 100

showed better result at 25% missing value. For the cell-cycle data

(Figure 3B), CIAO showed similar patterns of z-scores for t ¼ 10,

50, 100 and 500. We observe that the performance of CIAO is less

insensitive to the choice of t than that of m values.

Table 1 lists the comparison results of the average FOMs of the

imputation-based clustering methods and CIAO for the yeast sporu-

lation and cell-cycle data sets over five times. The standard devia-

tions of the methods used were 0.03–0.04 for the sporulation data,

0.1–0.2 for the cell-cycle data. Of the methods considered, the

EMimpute-based k-means gave better FOMs than the other methods

for the two datasets. The KNNimpute-based k-means and CIAO

gave similar FOMs over the missing range. However, as shown in

the table, the differences of FOMs were not significant enough to

explain the superiority of one method to another. This is the typical

limitation of the internal validation measures as pointed out by

Yeung et al. (2001). The internal validation use information within

the given data set only in order to compute the goodness of the

clustering results. Figure 4 shows the comparison of RMSE of the

imputation methods and CIAO for the incomplete data sets. From

the comparison results for the sporulation data, the KNNimpute

gave better RMSE at lower missing values whereas CIAO gave

better RMSE at higher missing values. The EMimpute shows

the most ineffective of the methods considered. As for the cell-

cycle data, we see that RMSE of each method increases as the

missing value increases. However, as mentioned earlier, RMSE

is limited to investigate the impact of the both imputation and

clustering together, indicating that better RMSE does not necessar-

ily lead to better z-scores and FOM.

Finally to compare the performance directly, we applied the

k-means to the CIAO-imputed data, and applied CIAO clustering

to the data imputed by KNNimpute and EMimpute methods. In

53
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33
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Missing value (%)

15%

CIAO (m=1.1)

CIAO (m=1.5)

CIAO (m=2.0)
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CIAO (m=3.0)

CIAO (m=1.1)
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Fig. 2. Comparison of the clustering performance of CIAO method for

different m values. (A) Z-scores of CIAO with T ¼ 100 and various m’s

for the sporulation data. (B) Z-scores of CIAOwith T¼ 100 and various m’s

for the cell-cycle data.
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Table 1. Comparison of clustering performance of the KNNimpute,

EMimpute-based k-means and CIAO methods for the sporulation and

cell-cycle data sets

Data set Method/%missing 5% 10% 15% 25%

Sporulation KNNimpute+k-means 1.31 1.31 1.30 1.30

EMimpute+k-means 1.26 1.24 1.28 1.27

CIAO 1.28 1.33 1.29 1.30

Cell-cycle KNNimpute+k-means 4.23 4.08 4.23 4.11

EMimpute+k-means 3.97 3.92 4.06 4.09

CIAO 4.01 4.06 4.11 4.13

The FOMs of each method are specified.
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Figure 5(A), we see that CIAO clustering showed similar perfor-

mances at low missing values regardless of the imputation methods.

When CIAO clustering was applied to the KNNimputed data at 25%

missing value, it gave lower z-score than the stand-alone CIAO

method. Compared to the KNNimpute/EMimpute-based k-means

in Fig. 1, the KNNimpute/EMimpute-based CIAO methods showed

better clustering results especially at 10 and 15%missing values. Of

the methods considered, the k-means method applied to the CIAO-

imputed data showed the most unstable clustering results. For the

cell-cycle data, the KNNimpute/EMimpute-based CIAO showed

better clustering performance than the imputation-based k-means

method as well. The k-means method using CIAO-impute data

showed the lowest z-scores of the methods considered. We see

from these tests that the CIAO method shows better performance

when it is applied for clustering incomplete data rather than when

applied just as an imputation method.

The results of the comparison tests indicate that the CIAOmethod

gave better clustering performance than the other imputation-based

methods considered, highlighting the effectiveness and potential of

the CIAO method. Furthermore, the KNN/EM/CIAOimpute-based

K-means methods often showed non-monotonic shapes. We think

that the results stems from the fact that the k-meansmethod is likely to

fall into local optimaunless the initial centroids are correctly selected.

4 CONCLUSION

Clustering has been used as a popular technique for analysis of large

amounts of microarray gene expression data, and many clustering

methods have been developed in biological research. However,

conventional clustering methods have required a complete data

matrix as input even if many microarray data sets are incomplete

due to the problem of missing values. In such cases, typically either

genes with missing values have been removed or the missing values

have been estimated using imputation methods prior to the cluster

analysis. In the present study, we focused on the bad influence of the

earlier imputation on the subsequent cluster analysis. To address

this problem, we have presented the CIAO method of clustering

incomplete gene expression data. By taking the alternative optimi-

zation approach, the missing values are considered as additional

parameters for optimization. The evaluation results based on gene

annotations have shown that the CIAO method is the superior and

effective method for clustering incomplete gene expression data.

Besides the issues mentioned in present work, several issues

require further investigation. The number of clusters is given

a priori by a user. We aim to use the cluster validity techniques

to develop a method for systematically determining the optimal

number of clusters for a given data set. In addition, we initialized

missing values with the corresponding attributes of the cluster

centroid to which the incomplete data point is closest. Although

this way of initialization is considered appropriate, further work

examining the impact of different initializations on clustering

performance is needed.
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