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Abstract

The Bayesian network is a popular tool for describing relationships between data entities by representing probabilistic
(in)dependencies with a directed acyclic graph (DAG) structure. Relationships have been inferred between biological entities
using the Bayesian network model with high-throughput data from biological systems in diverse fields. However, the scalability of
those approaches is seriously restricted because of the huge search space for finding an optimal DAG structure in the process of
Bayesian network learning. For this reason, most previous approaches limit the number of target entities or use additional knowl-
edge to restrict the search space. In this paper, we use the hierarchical clustering and order restriction (H-CORE) method for
the learning of large Bayesian networks by clustering entities and restricting edge directions between those clusters, with the aim
of overcoming the scalability problem and thus making it possible to perform genome-scale Bayesian network analysis without
additional biological knowledge. We use simulations to show that H-CORE is much faster than the widely used sparse candidate
method, whilst being of comparable quality. We have also applied H-CORE to retrieving gene-to-gene relationships in a biological
system (The ‘Rosetta compendium’). By evaluating learned information through literature mining, we demonstrate that H-CORE
enables the genome-scale Bayesian analysis of biological systems without any prior knowledge.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Many approaches have been used to infer system
architectures from observed biological phenomena. The
system architectures have often been described with
network-shaped models by incorporating biological enti-
ties as nodes and relations between those entities as edges
(de Jong, 2002). Modelling these relationships requires
information about the activities of the entities involved,

∗ Corresponding author. Tel.: +82 428694316; fax: +82 428698680.
E-mail addresses: swjung@biosoft.kaist.ac.kr (Sungwon Jung);
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for which many types of technology are applied. For
example, microarray technology can show the degree of
gene activities in biological systems by representing the
expression levels of genes with color and intensity infor-
mation.

The Bayesian network model (Neapolitan, 2004) is
widely used to describe relationships between biolog-
ical entities because it has a solid mathematical basis
and is able to describe complex stochastic processes.
A Bayesian network B is described as 〈G, P〉, where
G = 〈V, E〉 is a directed acyclic graph (DAG) with a
set of nodes V and a set of edges E. G represents prob-
abilistic (in)dependencies between nodes and P is the
joint probability distribution of the random variables that

0303-2647/$ – see front matter © 2006 Elsevier Ireland Ltd. All rights reserved.
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correspond to the nodes in G. When applying Bayesian
networks to biological entities, each entity corresponds
to a single random variable (one node in G) and each
data element of an entity is used as one sample instance
from the probability distribution in the biological system.
Thus inferring relationships between biological entities
with observed data using the Bayesian network model
involves the Bayesian network learning from a given set
of observed activity data.

The learning required by Bayesian networks is a chal-
lenging problem because of the large associated search
space (Chickering, 1996), which has resulted in Bayesian
networks involving only tens of nodes in many applica-
tions (Neapolitan, 2004), in contrast to many biological
applications requiring thousands of entities. To apply the
Bayesian network model to large problems such as gene-
expression analysis, Friedman et al. (1999) proposed a
method to restrict the local network structure so as to
reduce the DAG search space. Even though Friedman
et al. (1999) was successful in scaling up the Bayesian
network learning, it remains limited to problems involv-
ing hundreds of entities (Friedman et al., 2000). Other
approaches (e.g. Hwang et al., 2002) that restrict local
network structures also consider only hundreds of nodes.
One of the main reasons for this limited scalability is
the large number of candidate Bayesian network struc-
tures, which makes it too costly to compute the optimal
(or near-optimal) structure. There can be other reasons
of the limited scalability like the domain sizes of ran-
dom variables but they become significant especially
when the number of candidate network structures is
large.

Learning large networks enables us to find novel
knowledge between entities which could not be con-
sidered in the study of small selected entities. In this
perspective, recent approaches used to scale up Bayesian
network learning to the level of thousands of nodes
for biological applications include that of Lee and Lee
(2005), who used biological annotation information to
build modules of biological entities and performed the
Bayesian network learning in each module indepen-
dently. Peña et al. (2005) proposed a method to grow
Bayesian networks from given seed nodes to local net-
works with a given maximum radius. Even though these
methods have been applied successfully to thousands
of nodes for biological applications, they have weak-
nesses. For example, the method proposed by Lee and
Lee (2005) needs biological annotation information apri-
ori, and that proposed by Peña et al. (2005) has difficulty
in coping with a large number of nodes when only a
small amount of observed data is available. This will be
mentioned further in Section 2.2.

The aim of this study was to apply Bayesian net-
work analysis to thousands of biological entities without
requiring any knowledge in addition to the observed data
(although the availability of such additional knowledge
could be used to refine the results further). To achieve this
goal, we applied a fast learning method to large Bayesian
networks by clustering nodes hierarchically and restrict-
ing edge directions between those clusters.

This paper is organized as follows. In Section 2, we
describe conventional Bayesian network learning and
previous approaches for scaling it upward. Section 3
presents our method for scaling up Bayesian network
learning to thousands of entities, and shows the result of
benchmark evaluations to illustrate its benefits. Section
4 presents experimental results obtained when applying
our method to biological data, with the results and further
issues being discussed in Section 5.

2. Bayesian network learning

2.1. Conventional Bayesian network learning

The learning for a Bayesian network B = 〈G, P〉
using given observed data D involves two steps: learning
the graph structure G and learning the probability distri-
bution P. There are two approaches to structure learning
(which is the more important step): scoring-based and
constraint-based. The scoring-based approach involves
finding a G such that Score (G;D) is maximal for a given
scoring measure Score. One of the widely used scoring
measures is the Bayesian score (Heckerman et al., 1995),
an important characteristic of which is its decomposabil-
ity. If a scoring measure Score satisfies decomposability,
Score (G;D) can be evaluated by summing the local score
for each node gi with its set of parents PG(gi):

Score(G; D) =
∑

i

Score(gi|PG(gi); D) (1)

This decomposability gives an important benefit to
the learning process. A local search procedure involving
changing the status of a single edge connection allows
the gain in the score to be evaluated efficiently, since the
score change involves only the two nodes connected by
the edge. This characteristic is useful especially when
using approximate search procedures such as greedy hill
climbing.

In the constraint-based approach, conditional inde-
pendency test based algorithms are used to determine
the presence of Edge(gi, gj) (an edge from gi to gj) by
applying statistical analyses such as the χ2-test between
the two variables. However, we focus on the scoring-
based approach here because the models of near optimal
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structures can be averaged to produce a final result when
there are few observed data available—the constraint-
based approach lacks this ability (Neapolitan, 2004).

Scoring-based Bayesian structure learning involves
finding the optimal G for which the Score(G;D) is
maximal from among all possible graph structures.
However, it is infeasible to find an optimal solution
even for small problems (e.g. tens of nodes in a net-
work) because the number of possible graph structures
increases super-exponentially with the number of nodes
(Robinson, 1973). When using the Bayesian scoring
measure (Heckerman et al., 1995), it is known that
Bayesian structure learning is an NP-complete problem
(Chickering, 1996). For this reason, a popular way for a
Bayesian structure to find a near-optimal graph structure
is using heuristic approaches such as greedy hill climb-
ing (Neapolitan, 2004).

2.2. Large-scale Bayesian network learning

Since the conventional approximate search methods
cannot cope with problems with more than hundreds
of nodes, several heuristic approaches have been pro-
posed to restrict the DAG search space. Friedman et
al. (1999) proposed the sparse candidate (SC) method,
which determines CP(gi) – the set of candidate parents
– of size k (<n, where n is the total number of nodes) for
each node gi before the DAG search. The DAG search
in the SC method involves finding a G with a high score
such that PG(gi) ⊆ CP(gi), ∀gi ∈ U (where U is the set
of all n nodes), is satisfied for the G. Hwang et al. (2002)
proposed a method to restrict the local neighbor structure
around each node using a Markov blanket in a Bayesian
network, which is the set of neighbor nodes composed of
parents, children and children’s parents of a node. Brown
et al. (2004) proposed the max-min hill climbing method,
which restricts the candidate parents and children at each
node. All of these methods use heuristics to restrict the
local structure around each node. Even though restrict-
ing the local structure is successful in the learning for
Bayesian networks with hundreds of nodes, it is difficult
to apply such methods to problems involving thousands
of nodes such as gene-expression analysis, because a
combinatorial search for an optimal (or near-optimal)
DAG structure is still required for all n nodes.

For the Bayesian analysis of thousands of biolog-
ical entities, Lee and Lee (2005) proposed a method
that groups entities into several overlapping clusters
and performs Bayesian network learning in each clus-
ter independently. All the local Bayesian networks are
then merged into a single global Bayesian network by
overlapping the identical nodes in different clusters.

However, this method requires functional annotation
information additional to the observed data to group bio-
logical entities into functionally related groups. Because
no result has been given without those additional infor-
mation, it is unclear whether the approach of Lee and
Lee (2005) can be applied to the general Bayesian net-
work learning or not. Peña et al. (2005) proposed a
constraint-based Bayesian network learning method that
grows network models from given seed nodes. However,
this method experiences difficulty when only a small
amount of data is available, because it is difficult to apply
conventional model averaging techniques to constraint-
based approaches and thus it does not have a proper way
to handle large problems with limited data. The method
of Peña et al. (2005) is therefore considered to be more
appropriate for analyzing the local area around specific
seed biological entities of interest than for analyzing the
entire network area especially when only a small amount
of data is available.

3. H-CORE (hierarchical clustering and order
restriction) method

3.1. Method outline

Our aim was to apply Bayesian network analysis to
biological systems containing thousands of entities using
observed data but not prior knowledge. In the Bayesian
structure learning perspective, we denote this problem to
find an optimal DAG structure GU in the target Bayesian
network with U, which is a set of n entities that cor-
respond to the nodes in GU . Our approach involves
restricting the DAG search space much more than the
previous approaches (Brown et al., 2004; Friedman et
al., 1999; Hwang et al., 2002) that have determined
candidate local structures for each node before conduct-
ing the DAG search process. To achieve this goal, we
restrict the search space by restricting the global structure
and thus letting the combinatorial search of consider-
ing cycles which occur for at most cmax(<n) entities.
We cluster entities hierarchically with cluster size of at
most cmax (<n) and restrict the edge directions between
entities in different clusters into one direction to disal-
low cycles between clusters. The search space for DAG
structures is restricted significantly with this approach
because the consideration of cycles in the DAG search
process is needed only in each cluster of size at most
cmax. This is much more restricted search space com-
pared to that of DAG search considering cycles for entire
n nodes.

Our approach of Bayesian network learning takes fol-
lowing two steps with this structure restriction method:
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Fig. 1. The outline of the proposed method with an example of U, which involves 16 entities. (a) Given 16 entities including gi for learning a
Bayesian network. (b) The result of applying H-Cluster with cmax = 4. The root cluster is C0 = {C1, C2, C3}, but not shown here. (c) The result of
applying C-DAGSearch (C0, D). For gi, the elements of CP(gi) are represented with green color. (d) The result of applying C-DAGSearch (C2, D).
For gi, the CP(gi) is updated. (e) A Bayesian network GU that satisfies the restriction on candidate parents. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of the article.)

1. Structure restriction step:
(1) Hierarchically cluster entities with cluster size of

at most cmax(< n).
(2) Restrict edge directions between entities in dif-

ferent clusters.
2. Structure search step:

(1) Find a DAG that best fits the given data while
satisfying the restriction on edge directions deter-
mined in the previous step.

In the structure restriction step, we first builds the hier-
archy of clusters for entities such that each cluster has
a predetermined maximum size cmax (Algorithm 1. H-
Cluster; see the example in Fig. 1(a) and (b)). In H-
Cluster, clusters Ci and Cj with maximum Proximity are
merged into one cluster, where the Proximity between
two clusters is obtained from the mutual information

ID(gk; gl)1 measured from D between two entities gk

(� Ci) and gl (� Cj), such that each entity is included
in the corresponding clusters Ci and Cj . Note that the
notation ‘g � C’ is used for the case that ‘an entity g is
included in a cluster C’ while the notation ‘Clow ∈ C’
will be used for the case that ‘a cluster Clow is a child of
a cluster C in the hierarchy’. From this perspective, we
use the notation |C|ent to indicate ‘the number of entities
in C’while |C| indicates ‘the number of children clusters
of C’ in the cluster hierarchy. See Fig. 1 as an example,
where C2 = {C4, C5, C6} is shown. Then all of follow-

1 We use conventional mutual information evaluation method from
discretized data. By the way, it is known that mutual information is
biased towards higher values when data is strictly discretized and there
is an improved method for mutual information for continuous data
(Daub et al., 2004).
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ing descriptions are true: gi � C5, gi � C2, C5 ∈ C2,
|C2| = 3, |C5|ent = 3 and |C2|ent = 8. An edge which
has nodes in different clusters can be lost in the struc-
ture search step because edge direction will be restricted
between clusters. Because we should minimize the num-
ber of edges between clusters, which can be lost in the
structure search step, we define Proximity as the aver-
aged mutual information between two clusters, which
represents the expected denseness of edges between clus-
ters, by considering mutual information as an expecta-
tion value of an edge:

Algorithm 1. H-Cluster(U, D, cmax)
1: C := ∅
2:
3:
4: for allgi such that gi ∈ U do
5: Ci : = {gi}
6: C := C ∪ {Ci}
7: end for
8: repeat
9: {Cl, Cm} := argmaxCi,Cj∈CProximity(Ci, Cj ; D)

10:
11: if|Cl| + |Cm| > cmax then
12: Cnew := {Cl, Cm}
13: else
14: Cnew := Cl ∪ Cm

15: end if
16:
17: C := (C \ {Cl, Cm}) ∪ {Cnew}
18: until|C| = 1
19:
20: return C

Proximity(Ci, Cj; D) =
∑|Ci|ent

k=1

∑|Cj |ent
l=1 ID(gk; gl)

|Ci|ent × |Cj|ent
,

where gk � Ci, gl � Cj (2)

By defining Proximity in this way, we can reduce
the number of possible missing edges between clusters
when the edge direction is restricted to a single direc-
tion between clusters in the next step. Second, edge
directions between any two clusters on each hierarchy
level are restricted to a single direction (see examples in
Fig. 1(c) and (d)) with Algorithm 2 (C-DAGSearch), by
using a selected entity named as a representative gate-
way node GNi for each cluster Ci (Fig. 2). Algorithm 3
(RestrictCP) then determines CP(gi), which is a set of
candidate parents of gi, for each gi (∈ U) recursively
in the cluster hierarchy according to the restricted edge
direction between clusters (Fig. 1(c) and (d)). This use
of sets of candidate parents lets the restriction on edge
directions to be applied to the structure search step.
In the structure search step, the DAG search process
is conducted for all the nodes, which correspond to n

entities, to find GU of high score that satisfies the restric-
tion PGU (gi) ⊆ CP(gi), ∀gi ∈ U. This whole method
is outlined as H-CORE in Algorithm 4, which uses H-
Cluster (Algorithm 1), C-DAGSearch (Algorithm 2) and
RestrictCP (Algorithm 3) for the structure restriction step
and lastly does the structure search step.

Algorithm 2. C-DAGSearch(C, D)
1: GN := ∅
2:
3: for all Ci such thatCi ∈ C do
4: GNi := argmaxgj�Ci

Proximity({gj}, C \ {Ci}; D)
5: GN := GN ∪ {GNi}
6: end for
7:
8: Find GGN maximizing Score(GGN|D)
9: GC := 〈C, ∅〉

10:
11: for all Edge(GNi, GNj) in GGN do
12: Add Edge(Ci, Cj) to GC

13: end for
14:
15: return GC

Algorithm 3. RestrictCP(C, D, cmax)

1: GC := C-DAGSearch(C, D)
2:
3: for all Ci such thatCi ∈ C do
4: for all Cj such thatCj ∈ PGC (Ci) do
5: for all gk such that gk � Ci do
6: CP(gk) := CP(gk) ∪ {gl|gl � Cj}
7: end for
8: end for
9: end for

10:
11: for allCi such that Ci ∈ C do
12: if |Ci|ent > cmax then
13: RestrictCP(Ci, D, cmax)
14: else
15: for all gjsuch that gj � Ci

16: CP(gj) := CP(gj) ∪ (Ci \ {gj})
17: end for
18: end if
19: end for

Algorithm 4. H-CORE (U, D, cmax)

1: CP(gi) := ∅, ∀gi ∈ U

2: C := H-Cluster(U, D, cmax)/ ∗ As a result, C = {C0}, where
C0 is a root cluster.*/

3: RestrictCP(C0, D, cmax)
4: Find GU maximizing Score(GU |D) that satisfies

PGU
(gi) ⊆ CP(gi)∀gi,

5: return GU

H-Cluster is a type of hierarchical agglomerative cluster-
ing algorithm that builds a cmax-nary tree dendrogram,
in contrast to conventional hierarchical clustering, which
builds a binary tree dendrogram. Limiting the maximum
size of each cluster to cmax results in C-DAGSearch per-
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Fig. 2. The outline of C-DAGSearch. (a) Determining a representative gateway node for each cluster. (b) Searching a DAG between gateway nodes.
(c) Projection of the DAG structure between gateway nodes to the DAG structure between clusters.

forming DAG searches between clusters for no more than
cmax clusters. In RestrictCP, CP(gi) in each cluster is
determined according to the structure ofGC learned from
C-DAGSearch. The structure of GC in C-DAGSearch is
estimated using two assumptions. First, we assume that
the global graph is composed of local subgraphs, since it
can be considered to be a ‘graph of subgraphs’. From this
assumption, we make clusters and find a graph structure
between them. Second, we assume that each subgraph
has a boundary region that includes gateway nodes con-
nected with other subgraphs, where connections between
subgraphs are only via these gateway nodes. From these
assumptions, we estimate the graph structure between
clusters by taking one representative gateway node GNi

for each cluster Ci and the learning for a Bayesian net-
work using those gateway nodes (Fig. 2). We determine
an entity gi (� Ci) that has the maximal Proximity value
with the outside of cluster Ci as a representative gateway
node for Ci. This is derived from the intuition that such a
gateway node may be the closest one to the outside of the
cluster. After learning the structure GGN between these
gateway nodes, this is projected to the structure of GC
between clusters by matching each Edge(GNi, GNj) in
GGN to the corresponding Edge(Ci, Cj) in GC. By recur-
sively applying C-DAGSearch to all of the clusters in
the hierarchy, RestrictCP restricts the global structure
by determining graph structures between clusters, and
the restriction on global structures is applied to the DAG
search process of finding GU by determining CP(gi) for
each gi ∈ U. The last process of H-CORE involves find-
ing a target Bayesian network structure GU for the set of
all entities U. A GU maximizing the given scoring mea-
sure is searched for while preserving the restriction on
the candidate parents and thus satisfying the restriction
on global structures.

H-CORE restricts the global structure between clus-
ters as a DAG-shaped one recursively in the cluster
hierarchy, which significantly reduces the number of

candidate DAG structures and makes the DAG search
process extremely fast. Further, the DAG search pro-
cess for finding a GU can be implemented by applying
DAG searches independently to each cluster with the
corresponding sets of candidate parents if we use decom-
posable scoring measures such as the Bayesian score.
The restriction on edge directions gives an order between
clusters and optimizing the score in a cluster is indepen-
dent with that in other clusters by the decomposability
of the scoring measure—the total score is the sum of the
score for each node and the score for each node is deter-
mined only with the node and its parents as shown in Eq.
(1). Thus optimizing the score for a Bayesian network
can be done with several independent optimizations in
each cluster with corresponding candidate parents of
entities, which is determined in the structure restriction
step.

3.2. Evaluation with benchmark Bayesian networks

We evaluated our method using the four benchmark
Bayesian networks listed in Table 1 (Abramson et al.,
1996; Andreassen et al., 1991; Beinlich et al., 1989;
Heckerman et al., 1992). From these benchmark net-
works, 5000 data instances were sampled for each vari-
able as an observed training data set. For comparison,
our H-CORE and previous SC methods were applied to
the data instances to learn the target networks. Greedy
hill climbing was used to find for high-scoring DAG

Table 1
Benchmark Bayesian networks

Network Number
of nodes

Number
of edges

Mean
indegree

Maximum
indegree

ALARM 37 46 1.24 4
HAILFINDER 56 66 1.18 4
PATHFINDER 109 195 1.79 5
DIABETES 413 602 1.46 2
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structures, with a graph with no edges used as the initial
graph. In each step of greedy search, a candidate DAG
structure is selected for next search step, which shows
the highest gain of score by applying single edge mod-
ification operation to the previous candidate. An edge
modification operation is one of adding, removing and
reversing an edge. The search stops if no gain of score is
achieved. The scoring measure used in the search proce-
dure was a Bayesian score with equivalent sample sizes
of 3, 6 and 10. The equivalent sample size is a parame-
ter which is related to the problem condition rather than
learning algorithms and it is used to present our prior
belief on the probability distribution. Larger values of
equivalent sample size mean that our prior belief on the
probability distribution depends on larger amount of pre-
viously observed samples and thus it reduces the effect
of the training samples on the learning procedure. If we
have little knowledge on the real probability distribu-
tion, larger values of equivalent sample size can bias
the learning to the wrong direction (Yang and Chang,
2002). For this reason, larger values of equivalent sam-
ple size are not proper in our experiment because we do
not assume any prior knowledge on the probability dis-
tribution. We consider the equivalent sample sizes which
are used in our experiment are small values and proper
for the experimental conditions. Further, the equivalent
sample size value of 10 have been also used in other
studies of Bayesian network learning including that of
Brown et al. (2004). The values of k for the SC method
were 5 and 10, and cmax values of 15 and 30 were used
in the H-CORE method.

The experiment was repeated five times with dif-
ferent training data, and the evaluation was done for
the structural error and the number of candidate DAGs
explored until convergence. The structural error of a
learned network represents the number of different edge
connections between two nodes compared to the original
network, including missing, wrongly added and reversed

edges, and hence represents the quality of the result.
The reversed edges may be considered as less serious
errors than missing and wrongly added edges. How-
ever, a reversed edge breaks the causal relationship in
the original network and can prohibit other true edges
from being added because it can create cycles with the
erroneous direction. Because considering such causal
relationships is more rigorous way of evaluation than dis-
carding reversed edges from errors, we use this structural
error as a quality evaluation measure for the simulation
experiment and it has been also used widely in evaluation
of Bayesian network learning. The number of candidate
DAGs explored during the search process is used to rep-
resent the asymptotic learning time because every search
step for a candidate DAG is done by applying single edge
modification operation. Further, we can easily expect the
difference between the sizes of search spaces considered
by two methods with the number of explored candidate
structures. We list the averaged results of the five exper-
iments in this section.

Table 2 lists the summarized result of quality and the
learning speed of two methods by showing the struc-
tural error and the explored number of candidate DAG
structures when we use the Bayesian scoring measure
with the equivalent sample size 10. This result indi-
cates that the H-CORE method is of comparable qual-
ity to the SC method, while it exhibits a significantly
reduced learning time. Even though a simple greedy
search was used for the DAG search process in both
methods, the learning time increases significantly for the
SC method for more than hundreds of nodes. Applying
the SC method with k = 10 to DIABETES did not pro-
duce a reasonable result, due to the heavy computational
cost.

For more detailed description for the quality of the
results, we show the specificity and the sensitivity of
predicting edges by both methods in Tables 3–5. The
specificity and sensitivity of predicting Edge(gi, gj) is

Table 2
Summarized result of evaluation with the structural error and the number of explored candidate DAGs

Network Structural error Number of explored candidate DAGs

H-CORE SC H-CORE SC

cmax = 15 cmax = 30 k = 5 k = 10 cmax = 15 cmax = 30 k = 5 k = 10

ALARM 46 45 42 33 10K 18K 28K 58K
HAILFINDER 48 43 53 55 10K 17K 48K 99K
PATHFINDER 231 231 192 212 28K 51K 260K 566K
DIABETES 590 597 613 N/A 80K 158K 2916K N/A

Bayesian scoring measure with equivalent sample size 10 was used. Best cases are denoted as boldface. N/A indicates no result due to heavy
computational cost.
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Table 3
Specificity and sensitivity of H-CORE and SC using the Bayesian scoring measure with an equivalent sample size 3

Network Specificity Sensitivity

H-CORE SC H-CORE SC

cmax = 15 cmax = 30 k = 5 k = 10 cmax = 15 cmax = 30 k = 5 k = 10

ALARM 0.981 0.979 0.977 0.985 0.478 0.413 0.370 0.587
HAILFINDER 0.987 0.986 0.992 0.992 0.394 0.379 0.621 0.636
PATHFINDER 0.989 0.989 0.989 0.990 0.328 0.369 0.364 0.379
DIABETES 0.997 0.997 0.997 N/A 0.256 0.282 0.276 N/A

Table 4
Specificity and sensitivity of H-CORE and SC using the Bayesian scoring measure with an equivalent sample size 6

Network Specificity Sensitivity

H-CORE SC H-CORE SC

cmax = 15 cmax = 30 k = 5 k = 10 cmax = 15 cmax = 30 k = 5 k = 10

ALARM 0.983 0.982 0.977 0.984 0.522 0.500 0.370 0.565
HAILFINDER 0.989 0.987 0.991 0.990 0.500 0.424 0.591 0.561
PATHFINDER 0.989 0.989 0.990 0.989 0.338 0.364 0.379 0.354
DIABETES 0.997 0.997 0.997 N/A 0.229 0.261 0.238 N/A

evaluated as follows:

specificity = no. of true negative Edge(gi, gj)

no. of false positive Edge(gi, gj)

+ no. of true negative Edge(gi, gj)

(3)

sensitivity = no. of true positive Edge(gi, gj)

no. of true positive Edge(gi, gj)

+ no. of false negative Edge(gi, gj)

(4)

The specificity shows the ratio of correct rejection
for non-existing edges and the sensitivity shows the
ratio of correct hit for existing edges. Tables 3–5
show that both methods show similar specificity for
benchmarks. For sensitivity, both methods also shows
comparable results. When we consider the best cases
for each benchmark, SC achieves most of the best cases
for ALARM, HAILFINDER and PATHFINDER where

small numbers of nodes (37, 56 and 109) are involved.
However, H-CORE achieves best cases for the large
benchmark of DIABETES involving 413 nodes. Further,
SC cannot learn acceptable results in reasonable time
for such large problems.

From these results, we can say that H-CORE is appro-
priate for large problems where SC cannot be applied. If
we can get results in reasonable time by applying the SC
method to some problem, SC can be a proper approach to
solve the problem. However, the H-CORE method gives
acceptable results in reasonable time for very large prob-
lems where the SC method cannot be applied.

4. Application to large biological systems

4.1. Experimental environment

To test the performance of our method in a real bio-
logical application, we used the ‘Rosetta compendium’
gene-expression profile (Hughes et al., 2000) as the
target data. This is a set of gene-expression profiles

Table 5
Specificity and sensitivity of H-CORE and SC using the Bayesian scoring measure with an equivalent sample size 10

Network Specificity Sensitivity

H-CORE SC H-CORE SC

cmax = 15 cmax = 30 k = 5 k = 10 cmax = 15 cmax = 30 k = 5 k = 10

ALARM 0.975 0.975 0.977 0.984 0.304 0.304 0.347 0.543
HAILFINDER 0.989 0.990 0.990 0.990 0.515 0.545 0.545 0.545
PATHFINDER 0.988 0.989 0.990 0.990 0.262 0.318 0.400 0.389
DIABETES 0.998 0.998 0.998 N/A 0.312 0.311 0.302 N/A
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corresponding to 300 diverse mutations and chemical
treatments for the entire Saccharomyces cerevisiae
genome. For the Bayesian analysis, we selected 6148
genes by discarding those for which there were too
many missing values in the gene-expression data; thus
the target biological system included 6148 entities. A
few missing values were imputed using Norm (Schafer,
1997). The normalized log-ratio values of gene expres-
sion were discretized into three levels while maximizing
the mutual information in the gene-expression profiles
(Hartemink, 2001). Even though we had 300 expression
profiles, which represented a larger number of exper-
iments compared to the data from other expression
studies, they were still insufficient for learning the
Bayesian networks of 6148 genes. We used a bootstrap
approach to overcome this lack of information, which
has been used widely in analyses of large systems
(Friedman et al., 2000; Hartemink et al., 2002; Lee
and Lee, 2005; Neapolitan, 2004). In this experiment,
we performed 100-fold bootstrapping by applying the
H-CORE method 100 times with cmax = 80, so as to
obtain 100 different results for confidence analysis.

The results of the H-CORE method can be signif-
icantly affected by the clustering result of H-Cluster.
Because H-Cluster is deterministic and thus gives a sim-
ilar result for each run, we used randomized mutual
information rather than the original mutual information
in evaluating the Proximity values so as to add small
variation in the clustering result. H-Cluster uses the
Proximity measure that in turn uses mutual information
ID(gi; gj) as the proximity value between two genes.
Before the experiment, we evaluated the mutual infor-
mation value between every gene pair (gi; gj). Then, in
each experiment, we used a random mutual information
value Ir(gi; gj) for a gene pair (gi; gj) from a normal
distribution with mean value ID(gi; gj) and standard
deviation value ID(gi; gj). By determining the standard
deviation in this way, a larger variance will be given
to the randomized mutual information if the original
mutual information was higher one, and thus most of
the randomized variation will occur between gene pairs
of higher mutual information values. This randomized
variation around the original mutual information value
for each gene pair resulted in a variation in the clustering
result of H-Cluster.

We used the 100 learned results to evaluate the confi-
dence value of the relationship for each gene pair (gi; gj):

Confidence(gi; gj)

= no. of results with an edge between (gi; gj)

no. of experiments
(5)

For evaluation of the result, a popular approach is to
compare the result with a known true answer on gene
relationships (e.g. a true genetic network) or to find sup-
porting true evidences from other knowledge sources
(e.g. literatures). However, such an approach is limited
to the case of small genetic networks because there is
no known true genetic network of genome-scale and
it is infeasible to find out supporting true evidences
for genome-scale results by human efforts. For such
genome-scale studies, one possible approach to present
the correctness of a method is showing that it retrieves
more meaningful results from real data than from artifi-
cial random data (e.g. Friedman et al., 2000; Keedwell
et al., 2005). Even though the comparison with random
cases is somehow useful in showing correctness of a
method, we take more direct approach to show correct-
ness, which is showing that our method gives consistent
results with previous studies including true knowledge
(this approach is also partly taken by other studies includ-
ing that of Antonov et al. (2006) and Petti and Church
(2005)).

To show that our method works reasonably, we per-
formed a full text search of the SGD (Balakrishnan et al.,
2006) literature database, which includes 31,000 litera-
tures on S. cerevisiae, and show the correlation between
the confidence of our result and the literature hit ratio.
For each gene pair (gi; gj) in the result, we mined the
database to find literatures containing sentences involv-
ing the co-occurrence of the two gene names or their
synonyms. Literatures which include sentences with the
co-occurrence of two genes represent evidence of a close
biological relationship between them, or at least that they
were studied together for a specific biological reason.
In fact, there can be literatures which represent com-
putationally predicted gene relationships. However, our
result is independent of such previous computational
predictions because our computational method is novel
one for genome-scale Bayesian network analysis with-
out prior knowledge.

In addition to the quality evaluation, we constructed
a small set Us of 594 genes whose standard deviations of
the normalized log-ratio expression values were higher
than 0.17, in order to compare our whole-genome results
with those for selected genes only. It can be assumed
that most of the gene pairs with high confidence can be
found with a the small set of genes that have signifi-
cant variations in their expression values, thus reducing
the need to analyze the entire genome-scale. The results
described below demonstrate that a significant number
of gene pairs with a high confidence cannot be found
with such selected genes. For the comparison of both
methods in the case of the small set of genes, we also
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Fig. 3. Literature hit ratio for the number of gene pairs for which there are literatures. The black areas are the portions of gene pairs that cannot be
found with Us, the small set of selected genes.

applied H-CORE (with cmax = 24) and SC (with k = 4)
to Us with 100-fold bootstrapping for each and show the
compared result of confidence analysis in the following
section. For SC, we could not use k larger than 4 because
of heavy computational cost.

4.2. Results

Fig. 3 shows the literature hit ratio for the number
of gene pairs for which literatures were found from the
SGD database for each confidence interval and repre-
sents that our method at least gives consistent result with
the previous studies. The figure indicates that gene pairs
of higher confidence values show higher hit ratio val-
ues, demonstrating that the results from the proposed
genome-scale Bayesian analysis method are trustwor-
thy, because higher literature hit ratio values represent
a higher expectation of the presence of real biological
relationships. Thus when we apply Bayesian analysis to
large biological systems for less studies species, a result
with a higher confidence will be useful in finding a novel
biological knowledge because we found that the higher
confidence indicates a greater expectation that there will
be corresponding biological knowledge.

To show the benefit of a genome-scale Bayesian anal-
ysis relative to using a small set of selected genes, we
selected the small set of genes Us that showed a large
expression variation. If eigher of the genes in a gene
pair (gi; gj) is not in Us, that gene pair information can-
not be found by investigating Us. Fig. 3, in which the
portions of gene pairs that cannot be found with Us are
shown as black areas, indicates that most of the gene
pairs with corresponding literatures cannot be found with
Us. This implies that there is also considerable informa-

tion available on genes with lower expression variation.
Thus we can apply our Bayesian analysis method to
large biological systems to retrieve much more trustwor-
thy information from the observed data than that can be
obtained with small sets of selected biological entities.

Fig. 4 shows the compared result of confidence anal-
ysis of H-CORE and SC to the small set of data Us.
As shown in the graph, the confidence values of gene
pairs from both methods are correlated each other with
correlation value 0.76. This means that both methods
generally give similar result when they are applied to the
small set of selected genes. However, the plotted shape of

Fig. 4. Compared result of confidence analysis by applying H-CORE
and SC to Us. Each plot represents one gene pair. Gene pairs of confi-
dence value 0 for both cases are omitted.
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Table 6
Gene pairs with a confidence higher than 0.9. Descriptions are from the SGD database and the cited literature

Gene pairs Confidence Related description

YHR215W (PHO12) YAR071W (PHO11) 1.00 Both have molecular function of acid phosphatase activity
YIL169C YOL155C 0.96 N/Aa

YHR136C (SPL2) YPL019C (VTC3) 0.96 YHR136C is phosphate-regulated.b VTC3 is involved in
vacuolar polyphosphate accumulation

YML123C (PHO84) YJL012C (VTC4) 0.96 PHO84 is a phosphate transporter. VTC4 is involved in
vacuolar polyphosphate accumulation and is a vacuolar
transporter chaperone

YLR158C (ASP3-3) YLR160C (ASP3-4) 0.96 Both are involved in asparagine catabolism
YFL062W (COS4) YGR295C (COS6) 0.96 N/A
YJL012C (VTC4) YER072W (VTC1) 0.95 Both are involved in vacuole fusion
YLR160C (ASP3-4) YLR155C (ASP3-1) 0.95 Both are involved in asparagine catabolism
YLR155C (ASP3-1) YLR157C (ASP3-2) 0.95 Both are involved in asparagine catabolism
YBR012W-B YER138C 0.95 Both are involved in Ty element transposition
YDL248W (COS7) YHL048W (COS8) 0.95 N/A
YML132W (COS3) YIR043C 0.95 N/A
YHR136C (SPL2) YML123C (PHO84) 0.93 YHL136C is phosphate-regulated.b PHO84 is a phosphate

transporter
YJL012C (VTC4) YGR233C (PHO81) 0.93 VTC4 is involved in vacuolar polyphosphate accumulation.

PHO81 is involved in phosphate metabolism
YLR158C (ASP3-3) YLR155C (ASP3-1) 0.93 Both are involved in asparagine catabolism
YER189W YEL075C 0.93 N/A
YHR215W (PHO12) YHR136C (SPL2) 0.91 PHO12 has molecular function of acid phosphatase activity.

YHR136C is phosphate-regulatedb

YBR012W-A YJR028W 0.91 Both are involved in Ty element transposition
YLL066C YER190W (YRF1-2) 0.91 Both have function of halicase
YFL062W (COS4) YNL336W (COS1) 0.91 N/A
YGR295C (COS6) YJR161C (COS5) 0.91 N/A
YHL048W (COS8) YIR043C 0.91 N/A

a N/A indicates no corresponding functional description found.
b From Pinson et al. (2004).

Fig. 5. Network diagram of gene pairs with confidence values higher than 0.9. Possible common functional annotations are given in the boxes.
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the graph is slightly biased upward. This represents that
the SC method gives similar or slightly larger confidence
values for gene pairs compared to the H-CORE method.
From this result, we can find that the SC method may
have slightly more chances of finding true knowledge
compared to the H-CORE method but the difference is
not significant. This result is also in agreement with that
of the simulation study, where the SC method showed
similar or slightly higher sensitivity compared to the
H-CORE method for relatively small problems (Tables
3–5).

Table 6 lists the gene pairs for which our results indi-
cated that the confidence values were higher than 0.9. We
could find that 14 among the 22 listed gene pairs exhibit
closely related functional annotations by searching the
functional descriptions on each gene from the SGD
database and the cited literature. The remaining gene
pairs show no appropriate shared functional description
because the functions of most of these genes are cur-
rently unknown, although we can predict that these pairs
have close functional relationships. This assumption is
supported by the network diagram drawn by connecting
an undirected edge for each gene pair, as shown in Fig. 5.

Fig. 5 shows the network diagram drawn with gene
pairs of confidence values higher than 0.9. There are
nine connected components, with five of them show-
ing common functional annotations. Most of the genes
that are in the other four nonannotated connected com-
ponents currently have no known functional annotations.
YER189W and YEL075C are both hypothetical proteins
with no known function. YOL155C is involved in cell
wall organization and biogenesis, whereas YIL169C is
a hypothetical protein that has no known function. Inci-
dentally, the two connected components ‘COS1–COS4–

Table 7
Top 14 genes of the highest similarity with YIR043C by the BLASTN
sequence query

Gene p-Value

COS8 8.8e−123
COS6 7.8e−115
COS1 1.8e−101
COS4 3.3e−98
COS5 4.9e−98
COS2 3.2e−96
COS3 3.2e−96
COS7 3.0e−86
COS9 4.5e−75
COS10 6.9e−41
COS12 1.4e−38
YHL042W 9.8e−7
YCR102W-A 1.6e−08
PDS5 0.9992

Genes which were predicted from our result are denoted as boldface.

COS6–COS5’ and ‘COS3–YIR043C–COS8–COS7’ are
mainly composed of COS genes, which suggests that
these genes have close interrelationships. The inclusion
of the hypothetical protein YIR043C in this group sug-
gests that it also has close functional relationships with
those of the COS genes. This is supported by the fact that
YIR043C and the adjacent ORF, YIR044C, together may
encode a non-functional member of the conserved, often
subtelomerically encoded COS protein family (Harrison
et al., 2002; Despons et al., 2006). Further, we could find
that those COS genes show very high sequence similarity
with YIR043C as shown in Table 7 through the BLASTN
sequence query and those eight genes also show very
similar expression pattern as shown in Fig. 6. Only the
gene pairs with a very high confidence are shown in
Fig. 5, and a deeper analysis of all the whole confidence

Fig. 6. Expression pattern of COS1, COS4, COS6, COS5, COS3, YIR043C, COS8 and COS7.
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intervals for the network may yield further useful infor-
mation on functional gene relationships.

5. Concluding remarks

In this study, we applied the H-CORE method to
the Bayesian analysis of large biological systems using
observed data only. Conventional Bayesian analysis
approaches are unable to cope with thousands of entities
simultaneously. The previous methods for coping with
such a large number of entities need additional informa-
tion or may not be suitable for a practical environment
in which there is only a very small amount of observed
data available. Our method can overcome this scalabil-
ity problem by restricting the global structure through
hierarchical clustering and restricting edge directions
between those clusters.

Through evaluation with benchmark networks, we
have shown that the H-CORE method works well for
the large problems that conventional methods cannot
cope with. The application of our method to real biolog-
ical data (the Rosetta compendium) has yielded promis-
ing results through confidence analyses of gene rela-
tionships. With full text mining of the SGD literature
database, which includes 31,000 literatures on yeast, we
have shown that results with a higher confidence from
our experiment have higher literature hit ratios, which
represent higher expectations of real biological knowl-
edge. Thus we can also trust the results of the analysis of
a large-scale biological system for relatively unknown
target systems. Further, the majority of the results of our
Bayesian analysis of a large biological system cannot be
found by investigating the small set of selected entities
with high activity variation. This implies not only that
our method can provide much more additional informa-
tion, which cannot be found through studies with small
sets of selected entities, but also that applying such a
Bayesian analysis to large biological systems is useful
and that biological entities with a lower degree of activity
still provide useful information. Our Bayesian analysis
method for large biological systems presented in this
paper is effective at retrieving such information. We also
compared the results of confidence analysis for both
methods by applying them to the small set of selected
entities. Even though the SC method might have slightly
more chances of finding true knowledge compared to the
H-CORE method from the selected entities, we could see
the difference is not significant and both results are cor-
related each other.

Future studies should develop a more efficient clus-
tering method for use in the H-CORE method, and
appropriate definitions of edge expectation and order

estimation will improve the correctness of the method.
Using appropriate cluster validation measures based on
the size and number of clusters will yield explicit guide-
lines for balancing between the quality of the result
and the computational cost (running time of the algo-
rithm). Further, we can apply our approach to dynamic
Bayesian networks, where the difficulty associated with
the large search space is more serious than for conven-
tional Bayesian networks (e.g. Kim et al., 2004). For
further analysis we can also compare networks of bio-
logical entities from observed data with the networks of
all the known prior knowledge to systematically anno-
tate the analyzed results, easily identify new findings and
suggest possible hypotheses on such new findings related
to the functions of genes.
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