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PAPER

Enabling Large-Scale Bayesian Network Learning by Preserving
Intercluster Directionality

Sungwon JUNG†a), Nonmember, Kwang Hyung LEE††b), Member, and Doheon LEE†††c), Nonmember

SUMMARY We propose a recursive clustering and order restriction
(R-CORE) method for learning large-scale Bayesian networks. The pro-
posed method considers a reduced search space for directed acyclic graph
(DAG) structures in scoring-based Bayesian network learning. The candi-
date DAG structures are restricted by clustering variables and determining
the intercluster directionality. The proposed method considers cycles on
only cmax(� n) variables rather than on all n variables for DAG structures.
The R-CORE method could be a useful tool in very large problems where
only a very small amount of training data is available.
key words: Bayesian network, clustering, order restriction, search space
reduction

1. Introduction

The Bayesian network model has been used widely to de-
scribe probabilistic dependencies between variables. A
Bayesian network is a directed acyclic graph (DAG) that
includes parameters to describe the conditional probability
distribution of the variables. Such conditional dependencies
are represented by incoming edges to each variable. For-
mally, a Bayesian network B can be noted as B = 〈G, P〉,
where G is a DAG that can be stated as G = 〈V,E〉, in which
V is a set of random variables that correspond to the nodes in
G and E is a set of directed edges between these nodes (we
use the terms ‘node’ and ‘variable’ interchangeably in this
paper). P is a joint probability distribution of the random
variables in V.

To describe probabilistic dependencies between vari-
ables using a Bayesian network model, a Bayesian learn-
ing procedure is conducted with the given instance values
of the variables. There are two approaches for the learn-
ing of Bayesian networks: scoring-based and constraint-
based. In scoring-based learning, the problem involves find-
ing an optimal DAG that best fits the given data instances;
in constraint-based learning, the presence of edges is de-
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termined using statistical dependency measures. Each ap-
proach has its own benefits. Scoring-based learning is ro-
bust and can handle noisy data, and we can use model aver-
aging techniques to enhance the quality of the result when
there is a small amount of training data. Constraint-based
learning is generally faster than the scoring-based approach,
and gives a trustworthy result if there are sufficient training
data. For recent applications of Bayesian networks, there
are problems where a large number of variables exist with a
very small amount of training data. For example, analyses
of biological genetic networks should handle thousands of
genes simultaneously when there are only tens or hundreds
of observed data instances [9], [11], [18], [20]. Here we fo-
cus on such large problems with a small amount of training
data, and hence use scoring-based learning.

The scoring-based learning of a Bayesian network B
comprises two parts; learning a DAG structure G and learn-
ing probabilistic parameters P. In this paper, we focus on
learning DAG structures with given data, because this is
much more problematic than learning the probabilistic pa-
rameters. Learning a DAG structure from given data in-
volves finding an optimal DAG structure that best repre-
sents the conditional probabilistic dependencies of the vari-
ables. The common process for finding an optimal DAG
structure can be stated as follows: given some scoring
measure S core, such as the BDeu score [14] or the MDL
score [12], [23], a DAG structure Gi must be found for which
S core(Gi|D) is maximal, where D is a given set of data in-
stances. Conventional approximate search methods such as
greedy hill climbing and genetic algorithms [8] have been
used for structure learning because the number of candidate
DAG structures is very large even for a small number of
variables [21].

However, the efficiency of methods for learning struc-
tures needs to be improved for large problems. The num-
ber of variables considered here varies from several hun-
dreds to thousands. This scale is much larger than that in
previous conventional applications of approximate Bayesian
learning, in which networks of only tens of variables have
been considered. For example, one of the widely used
benchmark Bayesian networks in conventional approximate
structure learning is the ALARM network [4], which has 37
nodes. The infeasibility of implementing the learning proce-
dure for networks with more than hundreds of variables us-
ing conventional approximate search methods has led to the
proposal of various search space reduction approaches [5],
[10], [16]. However, these previous methods exhibit limited
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scalability because there may be cycles over all n variables,
making combinatorial searches on all n variables necessary
when searching DAGs. In this paper, we propose a new re-
cursive clustering and order restriction (R-CORE) method
for the fast learning of very large Bayesian networks. The
proposed method considers cycles on only cmax(� n) vari-
ables.

This paper is organized as follows. In Sect. 2, we de-
scribe previous approaches for the learning of large-scale
Bayesian networks. Section 3 outlines and then provides a
detailed description of the proposed method. An empirical
evaluation is presented in Sect. 4 to show the effectiveness of
our approach. Conclusions and further issues are mentioned
in Sect. 5.

2. Learning Large-Scale Bayesian Networks

Even though there are only tens of variables in conventional
Bayesian networks, the possible number of DAGs still be-
comes unmanageable since, for n nodes, it is [21]

f (n) =
n∑

i=1

(−1)i+1

(
n
i

)
2i(n−i) f (n − i), (1)

for n > 2

f (1) = 1

f (0) = 1

For example, the possible number of DAGs is 3, 25,
29, 281 and � 4.2 ×1018 for n values of 2, 3, 5 and 10,
respectively. Chickering [6] proved that the learning of
Bayesian networks is an NP-complete problem. Because
of the huge search space for DAGs, common approaches
for conventional Bayesian learning have involved the use of
approximate search algorithms such as greedy search. How-
ever, such algorithms exhibit insufficient scalability for ap-
plication to cases with more than hundreds of variables. In-
stead, we need to reduce the search space for DAGs, for
which two approaches can be used: assuming the variable
order and restricting local structures.

Several Bayesian learning algorithms have been pro-
posed for assuming that the variable order is already
given [2], [7], [15], [22]. These algorithms search only DAG
candidates that are consistent with the given order. How-
ever, they are not practical in real applications because the
true order of variables is rarely known.

The local structure restriction approach is based on the
sparsity of large networks, whereby each node has a rel-
atively small number of incoming edges. From this ob-
servation, Friedman proposed the sparse candidate (SC)
method [10] for reducing the search space for DAGs. The
SC method reduces the search space by determining k(≤ n)
candidate parents for each node. When every other n − 1
variables are candidate parents of a node, there are O(2n−1)
possible sets of parents for each node. In the SC method,
the restriction to a maximum of k candidate parents results
in the number of possible sets of parents being O(2k), with
the actual number possibly being less due to the presence of

cycles. It should be noted that there are other local structure
restriction approaches [5], [16] that exhibit similar scalabil-
ity.

Even though the local structure restriction approach is
useful for reducing the search space for DAGs, it still has
limitations. For the case of the SC method, the number of
possible sets of parents for a variable is reduced to O(2k)
from O(2n), but the DAG search remains a combinatorial
search on all n variables (due to cycles existing over all vari-
ables). In the application of SC method [11], only hundreds
of genes are selected as nodes among several thousands of
genes due to the computational cost. Therefore, if we could
reduce the number of variables where cycles are considered,
we could significantly reduce the search space for DAGs.

3. Proposed Method

3.1 Approach

In this study, we used the modular approach to restrict can-
didate DAG structures of Bayesian networks on all the vari-
ables. The basic idea of the modular approach is based on
the assumption that the entire network can be considered to
be a ‘network of subnetworks’. We restrict the candidate
network structures by determining clusters of variables as
subnetwork modules and considering the network structure
between those clusters as a structure restriction. Our ap-
proach comprises the following two main steps:

• Structure restriction

1. Cluster variables into cmax(� n) clusters.
2. Determine the intercluster directionality with

acyclicity.
3. For large clusters, apply this step recursively.

• Maximization

1. Find a DAG that best fits the given data while pre-
serving the intercluster directionality determined
in the structure restriction step.

Our objective is to restrict the DAG search space by
restricting the space of considered cycles. By determining
intercluster directionality in an acyclic manner, we can force
the maximization step to consider cycles only in each clus-
ter, and not for all the variables. However, a cluster be-
ing larger than our preferred cmax will result in the search
space being larger than our preferred size. To avoid this sit-
uation, we determine directionality by recursively applying
the structure restriction step to these large clusters. This ap-
proach is illustrated in Fig. 1.

Preserving the determined intercluster directionality in
the maximization step restricts the DAG search process to
considering cycles on at most cmax variables. In the structure
restriction step, every process involved in determining the
intercluster directionality is also performed with cmax clus-
ters. Thus cycles are considered for at most cmax entities in
the entire process of our approach, which presents a very
restricted search space compared to the original.
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(a) (b) (c)

Fig. 1 Outline of the proposed structure restriction approach with n = 10 and cmax = 3. (a) Clustering
variables into three (cmax) clusters. (b) Intercluster directionality between clusters. (c) Intercluster
directionality in cluster C3 (where |C3 | > cmax).

3.2 Algorithm

3.2.1 Graph-Theoretic Unbalanced Partitioning

The structure restriction step of Sect. 3.1 clusters variables
into cmax clusters and determines intercluster directionality
between clusters. The determined intercluster directionality
is preserved in the process of finding an optimal DAG struc-
ture, and thus we allow only one-direction edges between
any two clusters according to the determined intercluster di-
rectionality. For this reason, any edge with a direction op-
posite to the given directionality cannot be found by our ap-
proach. Thus, our clustering objectives is to minimize the
loss of reverse edges between clusters.

Pairwise measures have been used widely for estimat-
ing the presence of edges between variables, because of their
simplicity. However, estimating edge directions in Bayesian
network models with pairwise measures remains an open
problem, and hence we loosen the objective of clustering
so as to minimize the possible number of edges that can be
lost between clusters. The presence of edges in Bayesian
networks is estimated using a measure of the mutual depen-
dence of two variables. The mutual information I(Xi; X j)
between two random variables Xi and X j is computed for a
given set of data instances D according to

I(Xi; X j) =
∑
a∈Xi

∑
b∈X j

P(a, b) log2

(
P(a, b)

P(a)P(b)

)
(2)

where P(a), P(b) and P(a, b) can be computed from given
data instances D. We use w(i; j) = I(Xi; X j) to represent the
degree of the presence of an undirected edge between two
variables Xi and X j.

For the set of all variables X = {X1, . . . , Xn}, our objec-
tive is to construct cmax (� n) clusters {C1, . . . ,Ccmax } while
minimizing the sum of the degree of undirected edges be-
tween clusters. To achieve this goal, we consider an undi-
rected complete graph G = (V,E) in which each vertex Vi

corresponds to the random variable Xi and all vertices are
connected with each other (except themselves) with undi-
rected edges. Each edge e(i; j) has a corresponding degree
of edges w(i; j). To construct cmax clusters while minimizing

Algorithm 1 UnbalPartition(X, D, cmax)
1: G := (V,E) such that Vi ∈ V corresponds to Xi ∈ X and E =
{e(i; j) |∀Xi, X j ∈ X, i < j}

2: W := {w(i; j) = I(Xi; X j)|∀e(i; j) ∈ E)}
3:
4: while G has c < cmax disconnected components do
5: emin := e(k;l)(∈ E) such that w(k;l) is minimum ∀w(i; j) ∈W
6: E := E \ {emin}
7: W :=W \ {w(k;l)}
8: end while
9:

10: C := ∅
11:
12: for all disconnected subgraph Gi = (Vi,Ei) in G such that 1 ≤ i ≤ cmax

do
13: Ci := {X j|V j ∈ Vi}
14: C := C ∪ {Ci}
15: end for
16:
17: return C

the loss of the degree of edges, each e(i; j) is continuously
eliminated from E in increasing order of w(i; j) until G is par-
titioned into cmax disconnected components G1, . . . ,Gcmax .
The sets of variables corresponding to the vertices in the Gi

components represent the clustering result. This unbalanced
partitioning process, which does not consider the sizes of
clusters, is presented in Alg. 1.

3.2.2 Determining the Intercluster Directionality

To determine the intercluster directionality between clusters,
we first define the intercluster directionality as in Defini-
tion 1.

Definition 1 (Intercluster directionality): An intercluster di-
rectionality δ for the set of clusters C is defined with a DAG
between clusters G = (C,E).

An optimal intercluster directionality minimizes the
number of edges between variables that violate the direc-
tionality between clusters. However, it is still an open prob-
lem to define the ‘direction of conditional dependency’ be-
tween two variables. For this reason, we attempt to estimate
the intercluster directionality by finding a DAG structure be-
tween clusters; we use Bayesian network learning between
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(a) (b) (c)

Fig. 2 Outline of the method used to determine the intercluster directionality. (a) Finding boundary
variables. (b) Learning a DAG structure between boundary variables with the restriction of cluster
acyclicity. (c) Determined intercluster directionality between clusters.

clusters for this task.
Because the variables are clustered with the graph-

theoretic approach, each subgraph will contain ‘boundary
nodes’ that connect the subgraph to the other subgraphs.
We therefore assume that the conditional dependencies be-
tween clusters are determined with the dependencies be-
tween such boundary nodes in different clusters. For each
cluster Ci, a variable Xi (which is the closest one to cluster
C j, j � i) is selected as a representative boundary node to
C j, and denoted as bi j. When we consider a directed edge
ei j from cluster Ci to C j in the process of Bayesian network
learning between clusters, an edge from bi j to b ji is con-
sidered instead. Actually this approach is a heuristic and
will work only when the target networks can be divided into
several subnetworks, with boundary nodes playing a major
role in dependency relationships. For other networks which
do not have such characteristics, the proposed method may
not work correctly. However, we consider many networks
in real world may satisfy such characteristics to some extent
and our method can be useful for such cases. From this ap-
proach, we take the cluster acyclicity restriction defined in
Definition 2 in the process of Bayesian network learning for
the set of boundary variables B.

Definition 2 (Cluster acyclicity for C): Let B be a set of
boundary nodes for the clusters in C. Let GB be a directed
graph for B and GC be a directed graph for clusters in C. If
GB satisfies the following restrictions:

• For GB, edges are allowed only between bi j and b ji,
where i � j.
• If there is an edge from bi j to b ji in GB, there will also

be an edge from Ci to C j in GC. Then there is no cycle
in GC.

we say that C exhibits cluster acyclicity.

An example of this idea is illustrated in Fig. 2. The
algorithm for determining the intercluster directionality by
restricting the cluster acyclicity is presented in Alg. 2.

3.2.3 The R-CORE Method

Sections 3.2.1 and 3.2.2 describe the methods used to

Algorithm 2 C-Direct(C, D)
1: δ := G such that G = (C,E), E = ∅
2: B := ∅
3:
4: for i = 1 to cmax − 1 do
5: for j = i + 1 to cmax do
6: {Xk(∈ Ci), Xl(∈ C j)} := argmaxXm∈Ci ,Xn∈C j I(Xm; Xn)
7: bi j := Xk

8: bji := Xl

9: B := B ∪ {bi j, bji}
10: end for
11: end for
12:
13: Find a GB = (B,EB) maximizing S core(GB; D) with cluster acyclicity

for C.
14:
15: for all eB

i j ∈ EB do
16: E := E ∪ {ei j}
17: end for
18:
19: return δ

Algorithm 3 R-Restrict(X, D, cmax)
1: δ := ∅
2: C := UnbalPartition(X, D, cmax)
3: δ := C-Direct(C, D)
4: δ := δ ∪ {δ}
5:
6: for all Ci such that 1 ≤ i ≤ cmax do
7: if |Ci | > cmax then
8: δ := δ ∪ R-Restrict(Ci, D, cmax)
9: end if

10: end for
11:
12: return δ

cluster variables into cmax clusters and to determine the inter-
cluster directionality. The objective of the latter is to reduce
the complexity of the combinatorial search for DAGs in the
process of Bayesian structure learning. However, the pres-
ence of large clusters that leads to a combinatorial search
space larger than the desired one diminishes the benefit of
this approach. This problem is tackled by using a recursive
approach for such large clusters. For clusters with variables
that are larger than the given cmax value, Alg. 1 (UnbalParti-
tion) and Alg. 2 (C-Direct) are applied recursively until the
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Algorithm 4 R-CORE(X, D, cmax)
1: /*Structure restriction*/
2: δ := R-Restrict(X, D, cmax)
3:
4: /*Maximization*/
5: Find a G maximizing S core(G; D) while preserving all of the interclus-

ter directionality in the δ.
6: return G

clusters are smaller than cmax. By determining the interclus-
ter directionality in this way, we can restrict the search space
of candidate DAG structures for Bayesian structure learning
to the preferred size of the combinatorial search space us-
ing the parameter cmax. This recursive restriction method –
which returns the set of intercluster directionalities δ – is
presented in Alg. 3.

We use δ, which is the set of intercluster directional-
ity δ, to learn a Bayesian network structure that best fits the
given data while preserving all of the intercluster direction-
alities therein. A DAG G that preserves the given interclus-
ter directionality δ can be stated as in Definition 3.

Definition 3 (Preserving intercluster directionality): Let G
= (V,E) be a DAG for the corresponding X, C be the set
of clusters for X and δ = GC(C,EC) be a given intercluster
directionality for C. If there exists a corresponding eC

i j ∈ EC

for every ei j ∈ E, where Xi and X j are in different clusters,
we say that G preserves the intercluster directionality δ.

The complete R-CORE algorithm that uses Algs. 1–3
is presented in Alg. 4. This algorithm first determines the
set of intercluster directionalities δ, and then finds a G that
maximizes the given scoring measure S core(G; D).

The R-CORE algorithm recursively restricts the global
structure between clusters to a DAG-shaped one, which sig-
nificantly reduces the number of candidate DAG structures
and thus makes the DAG search process extremely fast. Fur-
ther, the inclusion of the structure restriction step does not
significantly increase the cost, since the total number of
clusters considered in this step is O(n/cmax). Bayesian struc-
ture learning for O(cmax) clusters is conducted in each clus-
ter to determine the intercluster directionality. If we denote
all the DAGs of n variables (Eq. (1)) as W(n), the number of
considered DAG structures in the structure restriction step is
only W(cmax) · O(n/cmax), which is much lower than W(n).

4. Empirical Evaluation

4.1 Experimental Environment

To show the effectiveness of the R-CORE method, we
compare its results with those of SC (which we use as
a representative local structure restriction approach). Six
known Bayesian networks (Table 1) [1], [3], [4], [13], [17],
[24] built for expert systems by human experts are used as
benchmarks. The number of nodes was varied from 37 to
724. From each benchmark Bayesian network, 5000 and
10000 data instances were sampled as the training data sets.

Table 1 Benchmark Bayesian networks.

Nodes Edges Mean indegree Max indegree
ALARM 37 46 1.24 4
HAILFINDER 56 66 1.18 4
WIN95PTS 76 112 1.47 7
PATHFINDER 109 195 1.79 5
DIABETES 413 602 1.46 2
LINK 724 1125 1.55 3

The case of 5000 data instances are closer to our target appli-
cations where only small amount of training data is available
while another case of 10000 data instances is close to more
conventional problems where relatively sufficient amount of
data is available. All of those benchmark Bayesian networks
include conditional probability tables to describe target dis-
tributions and thus we can generate samples from the de-
scribed distribution for training data. The R-CORE and SC
methods were applied to the data instances to learn the tar-
get networks. Greedy hill climbing search was used in our
experiments to find the DAG structures that maximized the
score. The empty graph with no edges was used as the ini-
tial graph of the greedy search, which implies that we had
no initial knowledge about the dependencies between the
variables, and we initially assumed that there were no such
dependencies. The scoring measure used in the search pro-
cedure was the BDeu score [14] with an equivalent sample
size of 10. We selected the equivalent sample size before
the experiment, and this was not tuned. The performance of
the R-CORE method was evaluated for cmax values of 5, 10,
15, 20, 25, 30, 35 and 40. For the SC method, k values of
5, 10 and 15 were used. However, we were unable to obtain
results for the cases of k = 10 and 15 for DIABETES and
all k values for LINK with the SC method due to their high
computational cost.

We first show the scores of the learned results for the
R-CORE method for various values of the cmax parameter.
We compare the results for the R-CORE and SC methods
from two viewpoints: the size of the explored search space
(which may reflect the learning speed) and the quality of
the results. First, the size of the explored search space is
assessed as the number of candidate DAG structures vis-
ited during the greedy search. Second, three categories are
considered for quality evaluation: edge correctness, overall
structural error and the likelihood (BDeu score); which are
used widely to evaluate learning methods for Bayesian net-
work structures [19].

4.2 BDeu Score of the R-CORE Method

Figure 3 shows the BDeu scores of the learned results for the
R-CORE method to the training data of 5000 instances with
different cmax values, where a higher score represents a bet-
ter learning result. In most of the cases the BDeu score of the
learned result increases with the value of cmax, which corre-
sponds to determining the intercluster directionality with a
higher resolution. For example, the intercluster directional-
ity with a cmax value of 40 is determined with 40 clusters on
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(a) ALARM (b) HAILFINDER

(c) WIN95SPTS (d) PATHFINDER

(e) DIABETES (f) LINK

Fig. 3 Logarithm of the BDeu score of networks learned by the R-CORE method for different cmax

values. The training data of 5000 instances was used.

each cluster hierarchy level, while a cmax value of 5 is deter-
mined with only 5 clusters. Using a lower number of clus-
ters to determine the directionality will increases the number
of missing edges with a direction opposite to the direction-
ality in the maximization step. Note that if cmax is equal to
the total number of variables, the R-CORE method works
as a conventional Bayesian network learning algorithm with
no search space restriction. Figure 3 shows only the case of
5000 data instances but another case of 10000 data instances
also shows the same tendency of monotonic increasing of
the score.

4.3 Evaluation Based on the Explored Search Space Size

For each of six benchmark Bayesian networks, the number
of visited candidate DAGs was counted for the R-CORE and
SC methods until the searches converged. The numbers of
visited candidate DAGs in both methods are illustrated in
Fig. 4 for 5000 data instances, which shows the results for
only four of the benchmark Bayesian networks because the
SC method failed to give learned results within a reasonable
time for DIABETES and LINK networks. The results show
the proposed R-CORE method learns target networks much
faster than the SC method, which is due to the global struc-
ture restriction approach of the former considering a much
smaller search space than the local structure restriction ap-
proach of the latter. In fact, the greedy search algorithm

does not consider the entire search space, and hence the re-
sults do not represent the exact size of the considered search
space for each case. However, the results do indicate the size
of the reduced search space approximately when using the
R-CORE method. This much faster speed of the R-CORE
method was also found from the experiments for another
training data of 10000 instances and that result is omitted
here.

Table 2 shows the actual running time of both meth-
ods in minutes using an Intel Pentium4 3 GHz machine with
2GB RAM. Even though the actual running time may be
different according to the implementation method of those
algorithms, their relative difference in scale of running time
will not change. This actual running time shows the strong
benefit of the proposed method. As the number of nodes
is increased in target networks, the running time grows su-
per exponentially for the SC method. Moreover, SC did not
converge in reasonable time for large networks. The pro-
posed R-CORE method does not show such super exponen-
tial growth of running time. Thus R-CORE can be a very
useful method for learning large networks in practical point
of view.

4.4 Evaluation Based on the Quality of the Result

4.4.1 Precision and Recall of Edges

The R-CORE and SC methods were also compared in terms
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Fig. 4 The number of visited candidate DAGs for the R-CORE and SC methods with 5000 training
data instances. The number of nodes in each network is given in the parentheses.

Table 2 Actual running time in minutes for both methods. This is for 5000 data instances.

Benchmark R-CORE SC
BN cmax = 5 cmax = 20 cmax = 35 k = 5 k = 10 k = 15

ALARM 1 1 1 1 4 5
HAILFINDER 1 1 1 2 10 16

WIN95PTS 1 3 11 7 32 53
PATHFINDER 1 12 15 13 47 98

DIABETES 1 33 58 480 N/A N/A

of the correctness of edges, which is measured by the preci-
sion and recall of edges defined as

Precision =

Number o f true edges in the
learned network

Number o f edges in the learned
network

Recall =

Number o f true edges in the learned
network

Number o f edges in the original
network

An edge in the learned network is a true edge if there is
a corresponding edge that has the same start and end nodes
in the original network. The precision of edges represents
how exact the edges are in the learned network, and the re-
call of edges represents how many of the original edges are
retrieved. The results are listed from Tables 3 to 6.

Tables 3 and 4 indicate that R-CORE and SC give com-
parable precision values, with the R-CORE results even be-
ing better in some cases. This implies that it is valid for the
proposed R-CORE method to ignore a greater amount of
the search space, where there are chances of adding false-
positive edges to the learning result. Tables 5 and 6 indi-
cates that the recall value is slightly lower for the R-CORE

method than for the SC method, which implies that the for-
mer loses more true edges than the latter due to the interclus-
ter directionality restriction. These results together indicate
that the search space reduction of the R-CORE method im-
proves the precision of edges but with a minor loss of true
edges.

4.4.2 Overall Structural Error

Another criterion used for quality evaluation was the over-
all structural error. This was increased by 1 if an edge be-
tween two nodes in the learned network differed from the
edge connection between corresponding nodes in the origi-
nal network, and hence represents how many erroneous edge
connections are in the result. Table 7 shows the best cases
of structural error of learned networks with the R-CORE
method and the SC method. The best cases of applying the
R-CORE method and the SC method for each of ALARM,
HAILFINDER, WIN95PTS and PATHFINDER are one of
the cases of applying their parameter values cmax and k for
each, where the single k value of 5 was applied for DIA-
BETES due to the computational cost of SC. This result in-
dicates that the structural errors of the two methods are com-
parable. Moreover, there are cases where the structural er-
ror is lower for the R-CORE method than for the SC method.
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Table 3 Precision of edges for 5000 data instances. Best cases are indicated in boldface.

Benchmark R-CORE SC
BN cmax =5 10 15 20 25 30 35 40 k =5 10 15

ALARM 0.474 0.395 0.286 0.255 0.255 0.298 0.269 · 0.301 0.446 0.466
HAILFINDER 0.328 0.500 0.567 0.548 0.533 0.600 0.644 0.639 0.545 0.521 0.436

WIN95PTS 0.208 0.315 0.310 0.203 0.272 0.217 0.313 0.317 0.264 0.290 0.241
PATHFINDER 0.460 0.363 0.329 0.357 0.375 0.344 0.347 0.377 0.458 0.400 0.387

DIABETES 0.292 0.333 0.365 0.360 0.359 0.350 0.367 0.350 0.319 N/A N/A

Table 4 Precision of edges for 10000 data instances. Best cases are indicated in boldface.

Benchmark R-CORE SC
BN cmax =5 10 15 20 25 30 35 40 k =5 10 15

ALARM 0.353 0.396 0.356 0.379 0.393 0.388 0.429 · 0.285 0.4 0.472
HAILFINDER 0.355 0.348 0.417 0.394 0.462 0.485 0.515 0.414 0.492 0.569 0.486

WIN95PTS 0.269 0.221 0.200 0.263 0.293 0.267 0.320 0.209 0.263 0.258 0.286
PATHFINDER 0.428 0.448 0.366 0.425 0.412 0.456 0.459 0.388 0.461 0.413 0.451

DIABETES 0.320 0.320 0.292 0.294 0.312 0.302 0.307 0.319 0.319 N/A N/A

Table 5 Recall of edges for 5000 data instances. Best cases are indicated in boldface.

Benchmark R-CORE SC
BN cmax =5 10 15 20 25 30 35 40 k =5 10 15

ALARM 0.391 0.326 0.304 0.283 0.283 0.304 0.304 · 0.347 0.543 0.608
HAILFINDER 0.288 0.439 0.515 0.515 0.485 0.545 0.576 0.591 0.545 0.545 0.469

WIN95PTS 0.268 0.366 0.393 0.250 0.330 0.295 0.411 0.393 0.401 0.562 0.491
PATHFINDER 0.323 0.272 0.262 0.287 0.308 0.318 0.303 0.323 0.400 0.389 0.389

DIABETES 0.244 0.281 0.312 0.314 0.317 0.311 0.322 0.314 0.302 N/A N/A

Table 6 Recall of edges for 10000 data instances. Best cases are indicated in boldface.

Benchmark R-CORE SC
BN cmax =5 10 15 20 25 30 35 40 k =5 10 15

ALARM 0.261 0.413 0.457 0.478 0.478 0.413 0.522 · 0.347 0.478 0.565
HAILFINDER 0.333 0.364 0.455 0.424 0.455 0.485 0.530 0.439 0.515 0.621 0.545

WIN95PTS 0.259 0.304 0.321 0.411 0.455 0.393 0.518 0.375 0.392 0.473 0.544
PATHFINDER 0.303 0.379 0.349 0.395 0.395 0.395 0.400 0.390 0.405 0.405 0.451

DIABETES 0.282 0.307 0.311 0.316 0.341 0.322 0.324 0.346 0.307 N/A N/A

Table 7 Structural errors of best cases for both methods.

Benchmark 5000 data 10000 data
BN R-CORE SC R-CORE SC

ALARM 38 33 34 30
HAILFINDER 39 53 55 46

WIN95PTS 132 150 138 142
PATHFINDER 191 192 189 188

DIABETES 587 613 612 579

For the ALARM case, there was no case where the R-CORE
method outperforms the SC method for any parameter value
and for both sets of data instances. The reason for this may
be the target network is too small for R-CORE to be effec-
tive. Because the R-CORE method restricts the DAG search
space much more than the SC method, it always have the
possibility to give worse results than those given by the SC
method. This weakness can be more significant for small
networks like ALARM, where the entire DAG search space
is relatively smaller than larger networks and the SC method
may fall into local minima with less possibility.

When we consider those two data sets of 5000 and
10000, the result clearly shows that the proposed R-CORE
method is more efficient when there are relatively small

Table 8 Likelihood of best cases for both methods. The shown values
are logarithm of BDeu scores divided by 1000.

Benchmark 5000 data 10000 data
BN R-CORE SC R-CORE SC

ALARM −53.4 −51.4 −102.9 −102.3
HAILFINDER −251.5 −250.6 −497.6 −497.4

WIN95PTS −53.3 −49.0 −103.2 −96.6
PATHFINDER −142.5 −136.4 −265.5 −261.3

DIABETES −1996.9 −1991.8 −3444.8 −3874.6

amount of training data. The R-CORE method also shows
comparable result for the larger training data set of 10000.
Thus the proposed method can be a better approach for the
large problems where limited training data is available.

4.4.3 Likelihood

The likelihood of the learned Bayesian network structure is
represented by the BDeu score, which implies P(G|D). Ta-
ble 8 shows the BDeu score of the best cases for both meth-
ods. The R-CORE method shows slightly less likelihood
for most of the cases except for the case of DIABETES with
10000 data instances. This result was already expected be-
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cause the R-CORE method restricts much more DAG search
spaces than the SC method and thus has more chance of los-
ing DAG candidates of high scores during the search. How-
ever, we can find that this weakness in likelihood compar-
ison does not always correspond to the result of structural
quality as shown in Sect. 4.4.2.

4.5 Summary of the Evaluation

The proposed R-CORE method reduces the search space
for DAGs in Bayesian network learning from a combina-
torial search of considering cycles on all n variables to that
for only cmax(� n) entities. This reduction in the search
space results in the R-CORE method learning target net-
works much faster than the widely used SC method. More-
over, the R-CORE method can learn large networks that
SC method cannot learn. If we increase the cmax value of
R-CORE, the score of the learned result generally still in-
creases due to a larger search space being covered. From
the structural viewpoint, R-CORE retrieves slightly fewer
true edges than does SC in most cases. However, the pre-
cision values are comparable for R-CORE and SC, with the
former showing superior values in some cases. This results
in R-CORE showing comparable structural quality with SC
because it effectively ignores (worthless) search spaces that
may increase the chance of adding false-positive edges to
the answer. Our empirical evaluation has therefore shown
that the proposed R-CORE method achieves much faster
learning than the SC method without a loss of learning qual-
ity. Thus the proposed method can be a comparable tool to
the SC method while learning target networks much faster.
Moreover, we can expect even better structural quality than
the SC method for the large problems where limited amount
of training data is available.

5. Conclusions

In this paper, we propose the R-CORE method for reduc-
ing the search space for the DAGs of large-scale Bayesian
network learning. We assume that target networks can be di-
vided into several subnetworks, with boundary nodes play-
ing a major role in dependency relationships. To reduce the
search space for candidate DAG structures, we recursively
cluster the nodes and determine intercluster directionality
on each level of the cluster hierarchy. The size of the search
space is significantly reduced by restricting every search
procedure for DAGs to the combinatorial search of consider-
ing cycles on at most cmax(� n) variables or clusters by pre-
serving the determined intercluster directionalities. Our em-
pirical evaluation with benchmark Bayesian networks shows
that our proposed method learns target networks much faster
than the widely used SC method. Further, even though the
proposed R-CORE method considers much smaller search
space than the SC method, the learned results for the two
methods are of comparable quality. The proposed method
can be more efficient for the problems where limited amount
of training data is available. We used greedy hill climbing to

explore DAG candidates in the experiments described here,
but more accurate (and slower) learning methods could also
be used to explore DAG candidates because the search space
is much smaller than that for the SC method. Additionally,
iterative or evolutionary learning search techniques could be
applied.

There are several ways in which this research could be
extended. We clustered the nodes in target networks with
an unbalanced graph partitioning algorithm. We could val-
idate the clusters chosen using appropriate cluster valida-
tion methods based on cluster sizes and the partitioning er-
rors. Such an approach may yield guidelines for the pre-
ferred speed and quality of the complete algorithm. Further,
we could apply this global structure restriction approach
to the learning of a dynamic Bayesian network, for which
the search space is much larger than that of conventional
Bayesian networks.
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