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Letters

Density-Induced Support Vector Data Description

KiYoung Lee, Dae-Won Kim, Kwang H. Lee, and Doheon Lee

Abstract—The purpose of data description is to give a compact descrip-
tion of the target data that represents most of its characteristics. In a sup-
port vector data description (SVDD), the compact description of target data
is given in a hyperspherical model, which is determined by a small portion
of data called support vectors. Despite the usefulness of the conventional
SVDD, however, it may not identify the optimal solution of target descrip-
tion especially when the support vectors do not have the overall charac-
teristics of the target data. To address the issue in SVDD methodology, we
propose a new SVDD by introducing new distance measurements based on
the notion of a relative density degree for each data point in order to reflect
the distribution of a given data set. Moreover, for a real application, we ex-
tend the proposed method for the protein localization prediction problem
which is a multiclass and multilabel problem. Experiments with various
real data sets show promising results.

Index Terms—Data domain description, density-induced support vector
data description (D-SVDD), one-class classification, outlier detection, sup-
port vector data description (SVDD).

I. INTRODUCTION

The purpose of data description (also called one-class classification)
is to give a compact description of a set of data referred to as target
data. It is usually used for outlier detection (the detection of unchar-
acterized objects in a target data set) or for conventional multiclass
classification problems especially where some of the classes are under-
sampled [1]. Several approaches such as density estimation approach
[2], [3], boundary prediction approach [4], [5], and reconstruction ap-
proach using clustering methods [1], [6] have been used to finding out
the compact description. When negative data that should be rejected
in a compact description are available, conventional multiclass classi-
fication methods were also used for finding the compact description of
target data [7].

Recently, Tax and Duin [1], [5] have invented support vector data
description (SVDD) which was inspired by support vector machines
(SVMs) [8]–[10]. In an SVDD [1], [5], the compact description of
target data is given as a hypersphere (a; R)with minimum volume con-
taining most of the target data; the objective function O

O = R2 + C+

n

i=1

�i (1)
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subject to (xi � a) � � � (xi � a) � R2 + �i and �i � 0; where n is
the total number of target data and the parameter C+(> 0) gives the
tradeoff between volume of a hypersphere and the number of errors [5].
Analogous to SVMs [9], [11], [12], the data description is described
by a few training data called support vectors [1], [5], and the kernel
trick [9] is utilized to find a more flexible data description in a high-
dimensional feature space [5].

Despite the usefulness of an SVDD [1], [5], however, the conven-
tional SVDD (C-SVDD) has limitations to reflect overall characteris-
tics of a target data set with respect to its density distribution. In the
C-SVDD, as mentioned before, the small portion of data called support
vectors fully determine the solution of target data description, whereas
all of the nonsupport vectors have no influence on the solution of target
description in the C-SVDD, regardless of the density distribution. How-
ever, the region around a nonsupport vector with higher density degree
should be included in a compact description rather than other regions in
order to more correctly identify the data description of the given data
set. Hence, the solution solely based on the support vectors, without
considering the density distribution, can miss the optimal solution.

To address the previous problem in the C-SVDD, we propose a den-
sity-induced SVDD (D-SVDD) to reflect the density distribution of a
target data set by introducing the notion of a relative density degree for
each data point. By using density-induced distance measurements both
for target data and for negative data based on the proposed relative de-
grees, the D-SVDD can shift the center of hypersphere to the denser re-
gion based on the assumption that there are more data points in a denser
region. Moreover, for a real application, we extend the D-SVDD to the
protein localization prediction problem which is a multiclass and mul-
tilabel challenge.

The structure of this letter is organized as follows. In Section II, we
introduce two methods for extracting relative density degrees, and the-
oretically formulate the proposed D-SVDD with new distance mea-
surements based on the degrees. Section III highlights the potentials
of the proposed approach through various experimental examples. In
Section IV, we apply the proposed method to a protein localization
prediction problem. Concluding remarks are presented in Section V.

II. DENSITY-INDUCED SVDD

A. Relative Density Degree and Density Induced Distance

To reflect the density distribution into the search of optimal solutions
of SVDD, we first introduce the notion of relative density degrees. The
relative density degree for a data point represents how dense the region
of the corresponding data point is compared to other regions in a given
data set. Even though several approaches can be applied to extract rel-
ative density degrees, in this letter, we propose two methods to extract
the relative density degree for each data point from a data set using a
nearest neighborhood approach (Method I) and a Parzen-window ap-
proach (Method II).

In Method I, by using d(xi;xKi ), the distance between xi and xKi
(the K th nearest neighborhood of xi), and the mean distance of K th
nearest neighborhoods of all target data,=K , the relative density degree
�i for xi is defined by

�i = exp ! �
=K

d(xi;xKi )
; i = 1; � � � ; n (2)

where =K = (1=n) n

i=1
d(xi;x

K

i ); n is the number of data in a
target class, and 0 � ! � 1 is a weighting factor. Note that this method
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reports higher relative density degree �i for the data point in a higher
density region: The data point with lower distance from itsK th nearest
neighborhood has a higher �i value.

In Method II, the relative density degree �i is defined by the expo-
nentially weighted Parzen-window density that is normalized by= (the
mean of all the Parzen-window density degrees); that is, �i is defined
by

�i = exp ! �
Par(xi)

=
; i = 1; � � � ; n (3)

where Par(xi) = (1=n) n
j=1(1= (2�)ds) exp(�(1=2s)(xi

� xj)
2), = = (1=n) n

i=1 Par(xi), d is the feature dimension of
input data, and s is the smoothing parameter of the Parzen-window
density [13]. Note that this method also reports higher �i for the data
point with higher Parzen-window density regarding to the mean of
Parzen-window densities of all data.

After calculating the relative density degrees, to incorporate the de-
grees into searching the optimal description in the SVDD methodology,
we propose new geometric distance measures called density-induced
distance measures. First, to incorporate the density degrees of target
data into searching the optimal description in an SVDD, we propose
a new geometric distance called a positive density-induced distance.
Suppose that each target data point can be represented as (xi; �i),
where �i is the relative density degree of xi. We define a positive den-
sity-induced distance �+i between target data point xi and the center of
a hyperspherical model (a; R) of a target data set as

�+i � f�i(xi � a) � (xi � a)g1=2 (4)

where a and R are the center and the radius of the hypersphere, re-
spectively. Note that �+i increases with growing �i. Hence, to enclose
the data point with increased �+i owing to a higher �i, the radius of a
minimum-sized hypersphere should be increased. The data point with
higher relative density degree has stronger influence on the search of
the minimum-sized hypersphere.

To incorporate the density degrees of negative data, we similarly de-
fine a negative density-induced distance ��l between negative data xl
and a, the center of the hyperspherical description of a target data set
as

��l �
1

�l
(xl � a) � (xl � a)

1=2

: (5)

Note that, contrary to �+l ; �
�

l decreases with an increasing �l. Hence, to
exclude the negative data point with a decreased ��l owing to a higher
�l, the radius of a compact hypersphere should be decreased; the neg-
ative data point with a higher relative density degree gives a higher
penalty on the search of the compact hypersphere for a target data set.

B. Mathematical Formulation of D-SVDD

First, we find the optimal hypersphere that includes most target data
by reflecting the relative density degrees of the target data. In this case,
we use �+i and slack variable �i(� 0) for the permission of training
error for each target data point. Then, we can obtain the optimal hyper-
sphere (a; R) by minimizing the objective function O

O = R2 + C+

n

i=1

�i (6)

subject to �i(xi � a) � (xi � a) � R2 + �i where C+(> 0) is the
control parameter in the C-SVDD [5]. Note that �i = (�+i )

2 �R2 for
training error data; otherwise, it is 0. It implies that �i also contains the
information of a relative density degree of xi.

Similar to C-SVDD [1], [5], the dual problem can be obtained by
maximizing D(�) using Lagrange multipliers

D(�) =

n

i=1

�i�ixi � xi �
1

T

n

i=1

n

j=1

�i�j�i�jxi � xj (7)

subject to n
i=1 �i = 1; 0 � �i � C+ and T = n

i=1 �i�i.
When negative data is available, our proposed method can also uti-

lize them to improve the description of the target data set. In this case,
using the negative density-induced distance and another slack variable
�l(� 0) for the possibility of training error in each negative data, we
find the optimal hypersphere that includes most target data and ex-
cludes most negative data. Here, �l = R2�(��l )

2 for negative training
error data. Thus, the new objective function is defined as

O = R2 + C+

n

i=1

�i + C�

m

l=1

�l (8)

subject to �i(xi�a)�(xi�a) � R2+�i and (1=�l)(xl�a)�(xl�a) <
R2 � �l, where m is the number of negative data and C� > 0 is a
control parameter similar to that of the C-SVDD [1], [5].

Similar to the previous case, the dual form of this case can be repre-
sented by maximizing D(�)

D(�) =

N

k=1

�0k�
0

kxk � xk �
1

T

N

p=1

N

q=1

�0p�
0

q�
0

p�
0

qxp � xq (9)

subject to N
k=1 yk�k = 1; 0 � �i � C+; 0 � �l � C�; T =

N
k=1 yk�k�

0

k , and �0k = yk�k , where yk is the label of xk (yk = 1
for a target data point; otherwise, yk = �1) and N is the total number
of data (N = n+m). Here, �0k = �i for target data xi and �0k = 1=�l
for negative data xl. Note that the dual form of this case retains the
Lagrange multipliers �i and omits the other variables and Lagrange
multipliers �i. Moreover, when �i = 1 (and �l = 1), this dual repre-
sentation is equivalent to the formalism of a C-SVDD [5]; this means
that the proposed method can act like the C-SVDD.

As seen in (7) and (9), the dual forms of the objective function of
D-SVDD are represented entirely in terms of inner products of input
vector pairs. Thus, we can kernelize D-SVDD to find a more flexible
description of D-SVDD. The kernelized version of the dual represen-
tation in (9) is

D(�) =

N

k=1

�0k�
0

kK(xk;xk)�
1

T

N

p=1

N

q=1

�0p�
0

q�
0

p�
0

qK(xp;xq)

(10)

where K( �; � ) is a kernel function [9], [14], [15] and the constraints
are the same with those of (9).

As shown in (7), (9), and (10), the dual forms are linearly constrained
optimization problems. Thus, to solve these problems, we adapt the
Powell’s TOLMIN procedure [16], [17], which solves linearly con-
strained optimization problems by solving a sequence of quadratic pro-
gramming subproblems to minimize the sum of constraint or bound vi-
olations. After solving the dual form in (10), the center a of solution
can be calculated by

a =
N
k=1 �

0

k�
0

kxk

T
(11)

and the radius R is calculated by the �+i distance between a and any
target data xi of which 0 < �0i < C+. Note that, different from the
C-SVDD [5], the center of the optimal hypersphere is weighted by the
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TABLE I
AVERAGE ERROR RATES AND THOSE STANDARD DEVIATIONS (%) OF TEN INDEPENDENT RUNS FOR FIVE DATA SETS WHEN TRAINED USING ONLY TARGET DATA

relative density degree �0

k; the center is shifted to a higher density re-
gion.

III. COMPARISON RESULTS

To investigate the success of these attempts and analyze the pro-
posed method, we conducted various tests with five real data sets: the
BREAST CANCER Wisconsin Database, the HEPATITIS Database,
the IRIS Plant Database, the WINE Recognition Database from
the University of California at Irvine KDD Archive [18], and the
LEUKEMIA Database of Golub et al. [19]. After preparing the test
data sets, we compared the performance of the proposed method with
five other well-known methods: a k-nearest-neighbor data descrip-
tion method (k-NNDD) [5], a Parzen-window density method [5], a
C-SVDD, a k-nearest neighbor classifier (k-NNC), and SVMs. The
model parameters and other kernel parameters were found by cross
validation to identify the best solutions of each method [5], [10].

The average error rates and those standard deviations of prediction
accuracies of ten independent runs of twofold cross validations are
given in Tables I and II. The label of a target data class is indicated
in the first columns of these two tables and the data in other classes
are the candidates of negative data. When only target data is used
in training (Table I), for the BREAST CANCER data set, the three
versions of the k-NNDD method showed 26.94%, 33.40%, and
36.55% as average error rates when the label of a target class is 0.
For the same data sets, the Parzen-window density method showed
4.62% error rate; and the C-SVDD showed 5.89%, 5.94%, and 5.09%
error, respectively. The proposed D-SVDD, however, showed 5.12%,
4.15%, and 4.15% error rates when Method-I of (2) was used, and
showed 5.24%, 5.24%, and 4.51% error rates when Method-II of (3)
was used. That was the C-SVDD comparable to the Parzen-window
density method, and these two methods outperformed highly the

k-NNDD method, and the proposed D-SVDDs outperformed slightly
the C-SVDD in all versions used including the Parzen-window method,
and the D-SVDDs with a Gaussian radial basis function (RBF)
kernel function had the best performance (as indicated in bold type).
Moreover, there was no big difference between the D-SVDD with
the Method-I and D-SVDD with Method-II.

Similar results were obtained for other data sets, but the improvement
of the D-SVDD over the C-SVDD was more conspicuous. Results
on the IRIS data set, for example, the average error rate of the
C-SVDD with a Gaussian RBF kernel function was 6.84% in all.
On the contrary, the D-SVDDs showed 4.78% and 4.80% error rates
according to the relative density extraction methods, respectively.
Especially for the LEUKEMIA data set, the improvement was most
prominent; the D-SVDD with Method-II obtained a 5.92% error
rate, whereas the C-SVDD showed a 16.58% error rate when a
Gaussian RBF kernel function was used.

When negative data was also used in training (Table II), similar
phenomena with the previous case occurred, but the error rates of the
proposed methods were highly decreased. In this case, the performance
of the proposed methods were comparable with the SVMs and
the k-NNC; the proposed method showed even better performance
than the SVMs and the k-NNC for HEPATITIS, LEUKEMIA, and
WINE data sets at the given test conditions. For the WINE data
set, for example, the average error rate was 1.22% for the D-SVDD
with Method-I, whereas for the C-SVDD, the error rate was 7.75%.
The result was better than those of k-NNC (2.51%) and SVMs
(1.40%). These kinds of improvement were more remarkable for
the LEUKEMIA data set (Table II).

From Tables I and II, we conclude that the proposed method showed
better prediction accuracies than the conventional data description
methods including the C-SVDD for all of the tested cases, regardless
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TABLE II
AVERAGE ERROR RATES AND THOSE STANDARD DEVIATIONS (%) OF TEN INDEPENDENT RUNS

FOR FIVE DATA SETS WHEN TRAINED USING BOTH TARGET DATA AND NEGATIVE DATA

of the types of kernel functions or regardless of whether the negative
data was used in training or not. Moreover, the best performance was
obtained when the D-SVDD with Gaussian kernel functions were
used. Furthermore, when negative data was used in training (Table II),
the performance of the D-SVDD was comparable to those of the
conventional well-known multiclass classification methods such as
SVMs and k-NNC; despite, it is generally accepted that multiclass
classification methods outperform data description methods [5]. That
is because multiclass classification methods are invented to give the
best separation without considering the volume of the data description
[5].

IV. APPLICATION TO PROTEIN LOCALIZATION PREDICTION

Subcellular protein localization, the location where a protein resides
within a cell, is one of the key functional characteristics of proteins
[20], [21]. An automatic and efficient prediction method for the pro-
tein subcellular localization is highly required owing to the need for
large-scale genome analysis [20]. From a machine learning point of
view, a data set of protein localization has several characteristics: The
data set has too many classes, it is a “multilabel” data set, and it is too
“imbalanced” [21]. Even though many previous works have been in-
vented for the prediction of protein subcellular localization, none of
them have tackled such characteristics effectively [20].

We currently think that the proposed D-SVDD is one of good candi-
date methods for protein localization prediction. It is a one-class classi-
fication method, which is suitable for imbalanced data sets since it finds
a compact description for a target data independently from other data
[5]. Moreover, it is easily used for the data set whose number of classes
is large owing to linear complexity with regard to the number of classes.
However, basically the proposed D-SVDD is not for a multiclass and

multilabel problem. For the protein localization problem, thus, we ex-
tend the proposed D-SVDD method by adopting the “one-versus-the
other” approach as the following procedure.

1) If a training data set is given, we divide it by class into a target data
set and a negative data set. For a label li, for instance, a data point
whose label set has li is included in the target data; otherwise, it
is included in the negative data set.

2) If a target data set and a negative data set are prepared for each
class, we find the optimal boundary of the target data by using the
cross-validation method.

3) We calculate the degree of membership for each class li for a test
data point xt using a scoring function

f(xt; li) =
Ri

d(xt; ai)
(12)

where (ai; Ri) is the optimal hypersphere of the target data that
are included in the class label li. Note that this scoring function
reports a higher value for a test data point with smaller Euclidean
distance between xt and ai regarding distance of Ri.

4) Finally, according to the values of the scoring function for all
classes, we rank the labels, and report them.

With this procedure, we can easily and intuitively extend the
D-SVDD for a multiclass and multilabel classification problem like
the protein localization prediction.

To evaluate the performance of the extended D-SVDD method,
we represent a protein in three different ways using several famous
ways [20], and make three data sets: Dataset-I, Dataset-II, and
Dataset-III (see Table III). In Dataset-I, we used pair-AAC features,
and gapped-AAC for sequence information including the amino acid
composition (AAC)[20], [22]. In the Dataset-II, using 2372 unique
motifs from InterPro Database, we represent a protein in a vector
in a 2372-dimensional space [20]. For Dataset-III, we combine the
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TABLE III
CHARACTERISTICS OF PROTEINS IN THE ORIGINAL HUH ET AL. DATA SET AND THREE TRAINING DATA SETS

TABLE IV
PREDICTION PERFORMANCE (%) OF ISORT AND EXTENDED

D-SVDD TO THE THREE DATA SETS

previous two features only for the proteins that have more than one
motif in the unique motif set.

For multilabel learning paradigms, only one measure is not suffi-
cient to evaluate the performance of a predictor owing to the variety
of correctness in prediction [23]. Thus, we use three measures (Mea-
sure-I, Measure-II, and Measure-III) for the evaluation of a protein lo-
calization predictor. First, to check the overall success rate regarding
the total number of the unique proteins N , we define Measure-I as
(1=N) N

i=1
 [L(Pi); Y

k
i ], where N is the total number of different

proteins, L(Pi) is the true label set of a protein Pi; Yik is the predicted
top-k labels by a predictor. Moreover,  [L(Pi); Y k

i ] = 1 if any label
in Yik is in L(Pi); otherwise, it is 0. We used k = 3 in this letter since
the numbers of true localization sites of most proteins are less than or
equal to 3 [21].

To check the overall success rate regarding the total number
of classified proteins in each class ~N , we define Measure-II as
(1)=( ~N) N

i=1
	[L(Pi); Y

k
i ], where ~N is the total number of clas-

sified proteins in each class, L(Pi) is the true label set of a protein
Pi; Yi

k is the predicted top-ki labels by a predictor, and the 	[ �; � ]
function returns the correct number of labels which is predicted
correctly.

Finally, to check the average rate of the success rates of each class,

we define Measure-III as (1=�) �

l=1
((1)=(nl)

n

i=1
�[Y k

i ; l]),
where � is a total number of classes, l is a label index, ~nl is the
number of proteins in the lth label, Y k

i is the predicted top-ki label of
a protein Pi by a predictor. Here, �[Y k

i ; l] = 1 if any label in Y k
i is

equal to l; otherwise, it is 0.
For competitive analysis, we compared the performance of the pro-

posed method with the ISort method [20] to the three data sets. Up
to now, ISort method showed the best performance for the prediction
of yeast protein multiple localization [20]. For the proposed method,
we used a Gaussian RBF kernel function [10], and used Method-I for
relative density degree extraction owing to a high dimensional feature
space.

The results of the ISort method and the proposed method of a twofold
cross validation for the three data sets are given in Table IV. From these
results, we could conclude that the extended D-SVDD method outper-
formed the ISort method for all three data sets, regardless of the kind
of evaluation measure. Moreover, motif information could increase the
prediction accuracy of the two methods considered even though the
coverage of motif information is lower than that of AAC-based infor-
mation. Furthermore, the best performance was obtained when both
features were used.

V. CONCLUSION

In this letter, we have proposed a novel method incorporating density
distribution of a given target data set when identifying the hyperspher-
ical data description of the data set. To reflect the density distribution,

we associated each data point with a relative density degree, and pro-
posed two kinds of density-induced distance measurement based on
the degrees. Using the distance measurements, we developed a new
SVDD method named D-SVDD. It was demonstrated that the proposed
method outperformed the other data description methods including the
conventional SVDD for all tested data sets, regardless of the kind of
kernel function and regardless of the use of negative data in a training
stage. When the information of negative data was available, the per-
formance of the proposed method was also comparable to well-known
multi class classifiers such as k-NNC and SVMs. Moreover, for a real
application, we extended the proposed method to the protein localiza-
tion prediction problem which is an imbalanced multiclass and multil-
abel problem, and observed promising results.

Currently, the time complexity of the proposed method is O(kN3)
whereN is the number of quadratic programming subproblems to solve
linearly constrained optimization problems [16], [17]. Thus, to apply
the proposed method to larger data sets, more research on reducing the
computational time is required. Moreover, more formal justification of
the proposed method is valuable for future work.
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Rival-Model Penalized Self-Organizing Map

Yiu-ming Cheung and Lap-tak Law

Abstract—As a typical data visualization technique, self-organizing map
(SOM) has been extensively applied to data clustering, image analysis,
dimension reduction, and so forth. In a conventional adaptive SOM, it
needs to choose an appropriate learning rate whose value is monotonically
reduced over time to ensure the convergence of the map, meanwhile
being kept large enough so that the map is able to gradually learn the data
topology. Otherwise, the SOM’s performance may seriously deteriorate. In
general, it is nontrivial to choose an appropriate monotonically decreasing
function for such a learning rate. In this letter, we therefore propose a novel
rival-model penalized self-organizing map (RPSOM) learning algorithm
that, for each input, adaptively chooses several rivals of the best-matching
unit (BMU) and penalizes their associated models, i.e., those parametric
real vectors with the same dimension as the input vectors, a little far
away from the input. Compared to the existing methods, this RPSOM
utilizes a constant learning rate to circumvent the awkward selection of a
monotonically decreased function for the learning rate, but still reaches a
robust result. The numerical experiments have shown the efficacy of our
algorithm.

Index Terms—Constant learning rate, rival-model penalized self-orga-
nizing map (RPSOM), self-organizing map (SOM).

I. INTRODUCTION

Self-organizing map (SOM) [9] and its variants, e.g., see [5], [7],
[8], and [17], are one of the popular data visualization techniques that
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Fig. 1. Two neighborhood topologies commonly used in an SOM. (a) Rectan-
gular neighborhood. (b) Hexagonal neighborhood. The number n next to the
dashed lines denotes the n-neighborhood of the neuron in grey. The number of
neurons in one-neighborhood in a k-polygonal neighborhood is k, i.e., the rect-
angular neighborhood has four one-neighborhood neurons while the hexagonal
neighborhood has six one-neighborhood ones.

provide a topological mapping from the input space to the output space.
Typically, an SOM map possesses a regular one or two-dimensional
(2-D) grid of nodes. Each node (also called neurons interchangeably)
in the grid is associated with a parametric real vector called model or
weight that has the same dimension as the input vectors. The task of
SOM is to learn those models so that the similar high-dimensional input
data are mapped into one-dimensional (1-D) or 2-D output space with
the topology as unchanged as possible. That is, the similar data in the
input space under a measurement are placed physically close to each
other on the map. This topology-reserved feature of SOM leads it to
the wide applications to data visualization [12], [6], data clustering [3],
image analysis [10], data mining [13], and so forth.

In general, a conventional adaptive SOM needs to initialize a
learning rate and gradually reduces its value over time to ensure the
convergence of the map. Usually, a small initial value of learning rate
is prone to make the models stabilized at some locations of input space
in an early training stage. As a result, the map is not well established.
Hence, by rule of a thumb, the learning rate is often initialized at a
relatively large value, and then gradually reduced over time using a
monotonically decreasing function. If we reduce the learning rate very
slowly, the map can learn the topology of inputs well with the small
quantization error, but the map convergence needs a large number of
iterations and becomes quite time-consuming. On the other hand, if we
reduce the learning rate too quickly, the map will be likely trapped into
a local suboptimal solution and finally led to the large quantization
error. To the best of our knowledge, it is a nontrivial task to select an
appropriate learning rate, in particular its associated monotonically
decreasing function. In the literature, a two-phase training of the SOM
has been further proposed by [14], which utilizes two learning rates
to solve the previous selection problem in training the SOM. In the
first phase, it keeps a large learning rate that aims at capturing the
rough topological structure of the training data quickly. In general, the
resulting map in the first phase is prone to error and the topological
structure may not be well established. In the second phase, a much
smaller learning rate is utilized to the trained map from the first phase,
which aims at the fine-tuning topological map to ensure the map
convergence. Nevertheless, the performance of the training algorithm
is still sensitive to the time-varied learning rate.

In this letter, we therefore propose a new rival-model penalized
self organizing map (RPSOM) learning algorithm inspired by the
idea of the rival penalized competitive learning (RPCL) [15] and
its recently improved variant, named rival penalization controlled
competitive learning (RPCCL) approach [1], [2]. For each input, the
RPSOM adaptively chooses several rivals of the best-matching unit
(BMU) and penalizes their associated models a little far away from
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