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ABSTRACT: A number of computational methods have
been used to unravel the core mechanisms governing the
regulation of gene expression, but these techniques examine
only portions of the genetic regulatory mechanism. For
example, some studies have failed to include the combined
action of multiple transcription factors (TFs) or the impor-
tance of TF binding constraints (i.e., the binding position
and orientation), while others have examined combinations
of only 2 or 3 TFs. Thus, we sought to develop a new
method for identifying regulatory modules in yeast, using an
algorithm that includes all combinations of TFs plus a
number of binding constraints when identifying target
genes. We successfully developed a computational method
for using microarray and TF–DNA interaction data to
identify regulatory modules. All possible combinations of
yeast TFs and various binding constraints were tested to
identify regulatory modules. Within the identified modules,
target genes were found to have common binding con-
straints such as fixed binding regions and orientations for
each TF. Moreover, targets showed similar mRNA expres-
sion profiles and high functional coherence. Our novel
approach, which accounts for both combined actions of
TFs and their binding constraints, can be used to identify
target genes and reliably predict regulatory modules over a
broad range of functional categories. Complete results and
additional information are available online at http://bisl.
kaist.ac.kr/�dhlee/comModule/index.html.
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Introduction

Specific spatiotemporal expression of genes and proteins is
essential in living organisms. Critical control of these
activities is overseen by the transcription factors (TFs),
which bind to specific DNA sequences and up- or down-
regulate nearby genes. These TF-binding DNA sequences,
called cis-elements or motifs, form the link between TFs and
their target genes, and have been identified using a variety of
experimental approaches. For example, conserved motifs
have been identified by multiple alignment of coexpressed
genes (Hughes et al., 2000; Tavazoie et al., 1999), and linear
regression has been used to model the associations between
mRNA expression levels and the abundance of specific
motifs (Bussemaker et al., 2001; Conlon et al., 2003; Keles
et al., 2002; Phuong et al., 2004). Microarray-based
techniques such as ChIP-chip and damID have also been
used for genome-wide in vivo mapping of TFs (Lee et al.,
2002; van Steensel et al., 2001).

Researchers have also attempted to identify global
regulatory networks, especially in yeast. These studies have
involved the prediction of relationships between TFs and
their target genes (Gao et al., 2004; Qian et al., 2003), as well
as assessment of combinatorial TF regulation, in which
multiple TFs cooperate to regulate gene sets in response to
diverse environmental signals. Researchers have developed
computational motif discovery algorithms capable of
identifying TFs that act together in combinatorial regulation
(Banerjee and Zhang, 2003; Beer and Tavazoie, 2004;
Hvidsten et al., 2005; Pilpel et al., 2001; Segal et al., 2003).
However, these methods have been limited by an inability to
precisely link the TFs to their motifs and targets. Other
methods have used raw ChIP-chip data to directly link TFs
and target genes for the identification of TF regulatory
� 2007 Wiley Periodicals, Inc.



networks (Bar-Joseph et al., 2003; Harbison et al., 2004; Kato
et al., 2004; Yu et al., 2003).

As the physical interactions of TFs with other proteins
such as polymerases and/or other TFs often require proper
orientation on the DNA strand, recent studies have focused
on identifying TF binding constraints and using them to
select target genes. Beer and Tavazoie (2004) identified
multiple constraints for specific functional groups of TFs
using clustering-based motif discovery and Bayesian
learning. However, they were unable to precisely infer the
relationship between TFs and corresponding motifs, because
computationally identified motifs were used. In addition,
clustering cannot group all genes with the same motif, as
noted by Bussemaker et al. (2001). These limitations would
seem to suggest that the methods of Beer and Tavazoie
(2004) are likely to miss potential modules. In another
study, Zhu et al. (2005) sought to identify human regulatory
modules by accounting for TF combinations and some
binding constraints. However, the authors examined only
two TFs in one module, and the utilized constraints were
limited to the proximity of two cis-elements.

We herein report the development of a novel computa-
tional method that identifies regulatory modules by
checking all possible combinations of TFs and examining
75 binding constraints for each TF. Our strategy integrates
information regarding TF combinations, cis-elements,
binding constraints and target genes into regulatory
modules. TFs may both activate and repress target genes;
our algorithm covers both cases because global expression
patterns are analyzed under various experimental condi-
tions, allowing identification of activated or repressed target
genes. When this algorithm was tested in budding yeast
using cell cycle data (Spellman et al., 1998) and environ-
mental stress data (Gasch et al., 2000), we successfully
identified a number of modules, most of which contained
2–5 TFs. Many genes with common motifs and constraints
showed functional relatedness and high correlations in their
microarray expression profiles. These results reveal that
simultaneous consideration of TF combinations and
binding constraints can yield significantly better identifica-
tion of regulatory modules versus assessment based on each
factor alone.
Methods

Data Preparation

Known TF binding sites were obtained from TRANSFAC 8.2
and ChIP-chip experiments. Among these, 98 TFs listed in
the TRANSFAC and Lee et al. (2002) were used for the
analysis. Microarray data from Gasch et al. (2000) and
Spellman et al. (1998) were used for the yeast gene
expression profiles. For the functional annotation of
modules, MIPS FunCat Scheme 2.0 was downloaded from
the MIPS website.
Motif Assignment

Chromosomal DNA sequences and gene annotation data
were downloaded from the Saccharomyces Genome Data-
base (Christie et al., 2004). For all yeast genes, upstream
sequences from �1,000 to 100 relative to the translation
start site were extracted. TF binding sites were assigned to
each gene in position weight matrix (pwm) or consensus
sequence format. For pwm, the search mechanism used in
Kel et al. (2003) was applied with 80% similarity score
threshold setting. For consensus sequence, an 85% similarity
score threshold was applied.
Identifying Genetic Regulatory Modules

To define the TF binding constraints, which are crucial in
our algorithm for module identification, we first divided
each upstream sequence into overlapping windows, with
denser overlaps near the translation start site (TSS). Starting
from the þ100 bp position, the first 50 bp (i.e., from þ100 to
þ50) were set to the first window, and subsequent 50 bp
windows were applied at 25 bp intervals. For example, the
second window covered þ75 to þ25, the third þ50 to 0,
and so on until the final window covered �100 to �150.
Beginning at �150, the window size was expanded to 100 bp
and the interval was expanded to 50 bp until all sequences
out to �1,000 bp were covered by overlapping windows.
Each region was additionally constrained by an orientation
constraint (i.e., 50 ! 30, 30 ! 50 or both directions). The
25 divided regions and 3 orientation constraints yielded
75 distinct constraints for each TF.

Our method has expanded previous research in the sense
that it allows a large number of TF combinations and
constraints in the regulatory module. The number of
possible TFs in a module is unlimited as long as the modules
meet the criterion as described below. For all combinations
of TF pairs and constraints, those with more than three
target genes and average pairwise Pearson correlation
coefficients above 0.5 for the cell cycle data (Spellman
et al., 1998) and 0.71 for the stress data (Gasch et al., 2000)
(corresponding to the top 1 percentile in the distribution of
all gene pairs in the microarray data) were selected as
modules. We required pairs of TFs instead of single TFs
because the latter did not yield significant results (see
Table II), and we were interested in combinatorial
regulation by multiple TFs. Once a module was initially
established, it was then separately tested with each
remaining TF in the dataset. Based on the assumption that
combinatorial regulation with more TFs will lead to the
more synchronized expression of target genes over the broad
experimental conditions, each new module (containing the
new TF) was approved if the average correlation of target
genes was larger than that of the previous module. In this
way, all possible combinations of TFs were examined, and
constraints and targets were selected together. From the final
result, redundant modules that share overlapping binding
constraints with the same set of TFs and targets are
Ryu et al.: Combinatorial Regulation and TF Binding Sites 1595
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consolidated, and overall binding constraints are identified.
Because our algorithm starts with TF pairs and tests
additional TFs only when the module satisfies the standard,
it does not search unnecessary combinations, which means
the search space is reduced greatly and regulatory modules
are found efficiently.

Finally, we used the functional annotations from the
MIPS database to assess the functional coherence of the TFs
and target genes in the discovered modules.

Determination of Statistical Significance of TF Binding

To obtain the significance of each TF combination, we first
determined the binding probability for each TF. Hypergeo-
metric distribution was used to calculate the probability of
TF binding to the observed or greater number of genes by
chance. The probability for each TF is given by:

HGðt;G; g; TÞ ¼
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whereG is the total number of genes in themicroarray, g is the
number of target genes in the module, T is the total number of

genes bound by each TFwith the binding constraint identified

in the module, and t is the number of genes bound by the TFs

in the module. These probabilities were then multiplied for

each TF combination; we assumed an independent relation-

ship because each TF may bind DNA independently, as

discussed below. A significance level of 0.01 was used as the

cutoff, and the value was divided by the number of TFs, and

then divided by the number of binding constraints in our

experiment for Bonferroni correction. Thus, P-value lower

than 1.36E-6 was considered significant.
Figure 1. An overview of the method. A: Schematic diagram of metho
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To test the significance of each module, we conducted
random modeling in which sets of TFs, binding constraints
and genes were randomly organized into modules, and
tested each module for significance. First, we randomly
selected a number of regulators (N) from 2 to 7, because the
discovered modules all had between 2 and 7 TFs (Table IV).
Then, N TFs and N binding constraints were randomly
picked. Genes with promoters containing binding sites for
the selected TFs and having the proper constraints were
retrieved and average pairwise Pearson correlation coeffi-
cients were calculated from the generated modules. The
entire module generation process was repeated 10,000 times
for each microarray dataset, and we calculated the fraction
of significant modules in which target genes showed
correlations higher than the threshold value (e.g., 0.5 for
the cell cycle data and 0.71 for the stress data).

Results

Identifying Regulatory Modules

Previously, researchers have used computational methods to
identify novel transcription-related motifs, and have then
compared these motifs with known TF binding sites to
predict candidate regulators (Banerjee and Zhang, 2003;
Beer and Tavazoie, 2004; Bussemaker et al., 2001; Hvidsten
et al., 2005). However, these methods cannot precisely link
the TFs to their motifs, and often do not account for DNA
binding constraints vital to the proper regulation of TFs. We
herein report a new computational method for identifying
genetic regulatory modules using an algorithm that accounts
for all TF combinations, as well as a number of binding
constraints and target genes (Fig. 1). We utilized data from
ChIP-chip experiments (Lee et al., 2002) and yeast TF
binding site information from the TRANSFAC database
d. B: Algorithm used for discovering combinatorial regulatory modules.
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(Matys et al., 2003), and iteratively scanned the upstream
sequences of all yeast genes for TF binding sites (see
Methods Section and Fig. 1A).

As TFs must be properly oriented on the DNA strand in
order to properly interact with the target gene sequences and
other proteins such as polymerases and/or other TFs, we
then sought to account for binding site constraints,
including the position of the motif relative to the translation
start site (ATG) and the orientation of the motif. We divided
the upstream sequence of each gene into 25 overlapping
regions, with denser overlaps near the translation start site
(TSS). Each region could be defined as having one of three
orientations, namely 50 ! 30, 30 ! 50, or both. The 5’0 ! 30

orientation means that all target genes in the module have
TF binding sites on the sense strand, while 30 ! 50 oriented
regions have their binding sites on the antisense strand. The
third category, ‘‘both orientations,’’ means that target genes
are not limited by orientation and the TFBS position is the
only constraint.

As shown in Figure 1b, we analyzed all possible TF pairs,
accounting for 75 different binding constraints for each TF,
and selected pairs with three or more target genes having a
average correlation above 0.5 for the cell cycle data
(Spellman et al., 1998) and 0.71 for the stress data (Gasch
et al., 2000). This threshold corresponds to the top
1 percentile of all gene pairs in the microarray data, and
is higher than that previously used in Banerjee and Zhang
(2003) and Zhu et al. (2005). We then iteratively tested every
other TF in the dataset, looking to see if the addition of the
new TF improved the correlation of the existing module.
Thus, our novel method was capable of considering all
possible combination of TFs and selecting constraints and
targets together. Moreover, because we used cis-elements
with known binding TFs, this work allowed a more precise
definition of TF-target gene relationships than that seen in
the previous studies. Application of this method to yeast
data allowed identification of 4,158 and 949 putative
regulatory modules containing 163 and 120 target genes
from the cell cycle and stress datasets, respectively (see Fig. 2
Figure 2. Characteristics of discovered modules. Modules may include 2 TFs

(module A), or almost any other combination of TFs (module B), including the binding of

2 TFs in both orientations (module C). The specific binding positions for each TF and the

orientations of the TF binding sites are also included in the modules.
for representative examples). Comparison of our modules
with annotated data from MIPS (Mewes et al., 2004)
revealed that our modules showed high coherences in their
functional categories.

For further study, we chose four identified modules of
various sizes having high functional coherence (Table I), two
from the cell cycle dataset and two from the yeast stress
dataset. Within all of these modules, the target genes tended
to show similar expression patterns. Moreover, the TFs and
target genes showed functional relatedness. However, it
should be noted that identification of combinatorial
regulation does not necessarily imply that the TFs undergo
physical interactions with each other (Harbison et al., 2004);
the involved TFs may physically interact to co-regulate
target gene expression, or they may bind separately to the
same target under different conditions.

The first representative module was obtained from the cell
cycle dataset (Spellman et al., 1998) and contained two TFs
(CBF1 and MET31) known to play regulatory roles in the
cell cycle. Previous studies by Kato et al. (2004) and Tavazoie
et al. (1999) identified these TFs as being involved in
combinatorial regulation. Our analysis indicated that CBF1
binds all of the identified target gene promoters between
�400 and �250 from the translation start site (ATG); this is
consistent with the CBF1 binding region reported in the
TRANSFAC database (Matys et al., 2003) (see our website).
The target genes in this module include four genes encoding
L-asparaginase II (ASP3-1, ASP3-2, ASP3-3, and ASP3-4),
which are spread out over thousands or tens of thousands of
base pairs on chromosome 12. According to the MIPS
categories, these genes encode proteins involved with
aspartate metabolism, nitrogen and sulfur utilization, and
stress responses. The two TFs in this module, CBF1 and
MET31, also play roles in the metabolisms of amino acids,
nitrogen and sulfur. The four target genes showed similar
expression patterns, with an average pairwise correlation of
0.6. Thus, this module showed a high coherence in terms of
functionality and expression.

The second module, which was also obtained from the cell
cycle dataset, consisted of four TFs (MCM1, STE12, MBP1,
and PDR3) and three target genes (YRF1-3, YRF1-6, and
YRF1-7). MCM1 and STE12 were previously shown to be
involved in combinatorial regulation of cell cycle control
(Harbison et al., 2004; Pilpel et al., 2001; Spellman et al.,
1998). MBP1 also plays a cell cycle-related role (Kato et al.,
2004; Yu et al., 2003), and was recently shown to be involved
in combinatorial regulation with MCM1 (Nagamine et al.,
2005). PDR3 has not been previously associated with
combinatorial regulation or cell cycle control. The binding
regions identified in our analysis for MCM1 and PDR3,
�500 to �350 and �100 to �25, respectively, overlap with
the known binding regions in the TRANSFAC database. The
three target genes, YRF1-3, YRF1-6, and YRF1-7, encode
members of the Y’-helicase protein 1 family, which fall into
the MIPS categories of DNA synthesis and replication
during the cell cycle. The expression levels of these three
genes fluctuate together during the cell cycle (Table I),
Ryu et al.: Combinatorial Regulation and TF Binding Sites 1597
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Table I. Examples of discovered module.

TF (constraints) Expression pattern Target genes (correlation) Module function

CBF1

(�400:�250/$)

ASP3-1

ASP3-2

ASP3-3

Amino acid metabolism

Nitrogen and sulfur metabolism

Stress response

MET31

(�1,000:�850/þ)

ASP3-4 (0.6)

MCM1

(�500:�350/�)

YRF1-3

YRF1-6

YRF1-7 (0.79)

DNA processing

Stress response

Cell cycle

STE12

(�400:75/þ)

MBP1

(�125:�75/þ)

PDR3

(�100:�25/þ)

FKH1

(50:100/þ)

RAP1

(�450:�350/þ)

RPL19B

ENP1

RPL23B

RPL26B

RPL42B

RPL39

RPS4A (0.878)

Ribosome biogenesis

Cell cycle

DNA processing

RNA processing

MSN2

(�400:�250/�)

CAT8

(�150:�75/�)

PAU1

PAU3

PAU6

YIL176C

YLL064C (0.724)

Stress response

TF combinations with binding constraints are listed on the left side of the graph. The ‘‘þ’’ designates the 50 ! 30 direction, the ‘‘�’’ designates the 30 ! 50

direction and the ‘‘$’’ designates both orientations. Expression profiles for the target genes in the modules are displayed, with average target expression
indicated with a red line. The y-axis is the log2 ratio of the expression value and the x-axis represents the experimental conditions of the microarray data.
Target genes, their average pairwise correlation values and representative module functions are listed on the right side of the graph.
yielding a high correlation of 0.79. No previous work has
shown a direct connection between the TFs and target genes
in this module. However, MCM1 and STE12 have been
shown to regulate other yeast helicases (Davis et al., 1992;
Fitch et al., 2003), suggesting that these TFs may regulate the
transcription of YRF1-3, YRF1-6, and YRF1-7 in vivo. The
binding constraints identified for STE12 and MBP1 in our
analysis did not match those in the TRANSFAC database.
However, this does not necessarily indicate that these are
false positive results, because the TF binding site databases
are unlikely to contain all possible binding sites for all TFs.
Future work will be required to confirm the binding sites
newly identified in this work.
1598 Biotechnology and Bioengineering, Vol. 97, No. 6, August 15, 2007
The third representative module was obtained from the
yeast stress data (Gasch et al., 2000) and contained two
TFs, FKH1 and RAP1, and seven target genes encoding
seven ribosomal or ribosome-related proteins. FKH1 and
RAP1 were previously shown to cooperate to regulate
the ribosomal protein, RPL31B (Hvidsten et al., 2005).
According to our analysis, RAP1 binds between �450 and
�350, in the þ orientation. This binding region overlaps
with the known sites in the TRANSFAC database. Six of the
seven target genes are ribosomal proteins, while the other
target, ENP1 is involved in 20S pre-rRNA processing (Lai
et al., 2005), giving this module a high functional coherence
and a correlation of 0.878. FKH1 is involved in the stress
DOI 10.1002/bit



Table II. Evaluation of the proposed method.

TF Binding constraints Number of target genes Average correlation

CBF1 Presence 3,856 0.03

�400:�250/$ 878 0.027

MET31 Presence 235 0.026

�1,000:�850/þ 28 0.04

CBF1—MET31 Presence 220 0.025

�400:�250/$$$ and �1,000:�850/þ 4 0.6

MCM1 Presence 4,220 0.03

�500:�350/� 499 0.034

STE12 Presence 6,005 0.031

�400:75/þ 5,597 0.031

MBP1 Presence 2,125 0.028

�125:�75/þ 152 0.035

PDR3 Presence 1,689 0.029

�100:�25/þ 57 0.03

MCM1-STE12-MBP1-PDR3 Presence 455 0.027

�500:�350/� and �400:75/þ and �125:�75/þ and �100:�25/þ 3 0.79

FKH1 Presence 3,805 0.022

50:100/þ 199 0.027

RAP1 Presence 936 0.017

�450:�350/þ 108 0.053

FKH1—RAP1 Presence 720 0.019

50:100/þ and �450:�350/þ 7 0.878

MSN2 Presence 3,317 0.022

�400:�250/� 332 0.031

CAT8 Presence 1,319 0.022

�150:�75/� 41 0.017

MSN2—CAT8 Presence 880 0.026

�400:�250/� and �150:�75/� 5 0.724

Comparison of the four modules shown in Table 1 (bold) versus several other modules with different constraints shows that both combinatorial TF
regulation and binding constraints contribute to specific target selection. ‘Presence’ indicates that at least one TF binding site was identified upstream of the
target gene. Modules with different constraints have large numbers of target genes and low average Pearson correlation scores.
response (Shapira et al., 2004) and RAP1 is known to bind
upstream of ribosomal protein genes (Klein and Struhl,
1994; Miyoshi et al., 2003; Moehle and Hinnebusch, 1991).
Ribosomal protein expression has been shown to change
during multiple stress responses (Gasch et al., 2000),
indicating the functional relatedness of this module.

The fourth representative module, also obtained from the
stress data, consisted of two TFs (MSN2 and CAT8) and five
target genes (PAU1, PAU3, PAU6, YIL176C, and YLL064C).
Of these, MSN2, PAU1, PAU3, and PAU6 fall into the MIPS
category of stress response. Although CAT8 is not contained
within the stress response MIPS category, it has been
reported to play a role in the response to nutrient stress
(Tachibana et al., 2005), giving this module a high
functional coherence. MSN2 and CAT8 are known to be
involved in gene activation or repression under a variety of
growth conditions (Kim and Iyer, 2004), but this is the first
indication that they may be involved in combinatorial
regulation. The binding interval identified for MSN2,
between �400 and �250, is consistent with that in the
TRANSFAC database. The target genes in this module
included three PAU-protein family members (PAU1, PAU3,
and PAU6) and two novel genes (YIL176C and YLL064C)
that show strong sequence similarity to members of the
Srp1/Tip1p family of cold and heat shock-induced PAU-
family mannoproteins (Bourdineaud, 2000; Kwast et al.,
2002). Thus, all target genes in this module are members of
the PAU family and are thought to be closely related to the
stress response, yielding a high correlation value of 0.724.
One of the targets, PAU6, was previously shown to be
regulated by MSN2 (Bruckmann et al., 2004), providing
additional evidence for the veracity of the identified
regulatory module.

In sum, our novel method allowed identification of many
putative regulatory modules, and analysis of four repre-
sentative modules identified both known and novel TF
combinations and TF-target interactions. The identified
binding constraints of many TFs overlapped with the known
constraints in spite of a lack of sufficient information. Our
results also revealed high target gene correlation and
functional coherence within each module. A list of all
discovered modules and additional related data are available
on our website (http://bisl.kaist.ac.kr/�dhlee/comModule/
index.html).
Evaluation of the Discovered Modules

To evaluate the effectiveness of our method, we repeated our
analysis with individual constrained TFs or unconstrained
TF combinations (Table II). When we constrained our
analysis for the presence of at least one TF binding site
Ryu et al.: Combinatorial Regulation and TF Binding Sites 1599
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Table III. Significance of combinatorial TF binding.

TF combination Binding constraints P-value

CBF1—MET31 �400:�250/$ and �1,000:�850/þ 1.45E-13

MCM1-STE12-MBP1-PDR3 �500:�350/� and �400:75/þ and �125:�75/þ and �100:�25/þ 4.64E-15

FKH1-RAP1 50:100/þ and �450:�350/þ 2.01E-22

MSN2—CAT8 �400:�250/� and �150:�75/� 3.03E-17

To evaluate the statistical significance of our results, we calculated P values for each combination listed in Table 1. All TF combinations placed within
modules show P values <1.36E-6, which is the threshold for significance of the Bonferroni-corrected P values.
upstream of a target gene, we obtained modules having
hundreds or thousands of target genes despite the use of
stringent motif assignment thresholds designed to reduce
inclusion of false binding sites. In addition, the pairwise
Pearson correlation coefficients of these target genes
were generally low. For example, 3,805 yeast genes were
identified as having FKH1 binding sites, and these genes
showed an average pairwise correlation of 0.022. Similarly,
the use of unconstrained TF combinations in the analysis
yielded large numbers of target genes having low correla-
tions. Using the binding constraints for a single TF also
failed to identify significant modules; the use of additional
constraints reduced the number of targets, but the average
correlation was low. These results collectively show that only
modules identified using TF combinations and appropriate
binding constraints showed high target gene correlation,
indicating that these factors are vital to the proper
identification of functional binding sites and target genes.

To confirm the significance of our results, P values of
combinatorial binding were calculated for the discovered
modules (Table III). The probability of TFs randomly binding
to the same or greater number of genes than observed was
calculated using hypergeometrical distribution. The resulting
P values were lower than the Bonferroni-corrected sig-
nificance level, 1.36E-6. The P values of each module may be
accessed through our website.

The significance of modules was further tested by random
modeling. To ensure that the discovered modules were more
significant than those obtained by random chance, 10,000
modules were randomly generated for each microarray
dataset (see Methods Section) and the average correlation of
Table IV. The statistics of discovered modules.

Data

Number of

TFs within the module

Number

of modules

Percentage

(%)

Spellman et al. (1998) 2 324 7.79

3 1,241 29.85

4 1,411 33.93

5 893 21.48

6 267 6.42

7 22 0.53

Gasch et al. (2000) 2 284 29.92

3 472 49.74

4 149 15.70

5 44 4.64

Regulatory modules were analyzed based on the number of TFs within
modules. Most of the discovered modules from either dataset consisted of
2–5 TFs.
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target genes in each module was compared to the
abovementioned threshold. We obtained 1 significant
module from each dataset, indicating that there is a
<0.0001 probability that the utilized TFs, constraints and
target genes could be organized into a single significant
module by random chance.
TF Pairs in the Discovered Modules

To examine how many TFs are required for combinatorial
regulation, we analyzed TF combinations from all dis-
covered modules. Table IV shows the distribution of
regulatory modules containing different numbers of TFs.
Our finding that the majority of modules required 2–5 TFs
in both datasets is consistent with the reports of Hvidsten
et al. (2005). Other groups also obtained modules contain-
ing only a single TF. However, as our findings and the work
of Hvidsten et al. (2005) suggest that modules with single
TFs and high target gene correlation are rare, and our
research was focused on combinatorial regulation, we did
not examine single-TF modules in the present work.

Discussion and Conclusion

The identification of regulatory modules is an early step
toward elucidating whole-cell signaling networks. As a
relatively small number of TFs are responsible for
controlling the entirety of gene expression, it is likely that
they act in various combinations to provide a high level of
functional diversity. Here, we analyzed these combinations,
along with binding constraints and target genes, in an
effort to better understand the precise mechanisms of TF
regulation.

Our novel method for identifying regulatory modules is
more accurate than the previously reported methods
because we used TFs with known binding sites, providing
a firm link between TFs, cis-element and targets. In addition,
we considered the position and orientation of the binding
sites, and searched all possible TF-binding site combina-
tions. The modules identified using our method could
not be identified using either parameter alone. Our TF
combinations might represent physical interactions
between TFs, competitive DNA binding, or conditional
DNA binding. Future work with larger pools of TF
interaction data will be required to distinguish among
these possibilities.
DOI 10.1002/bit



Even though we herein present representative modules
with some discussion of previous reports and functional
annotation, further experimental evaluation will be required
to confirm these findings. In future studies, the TF sets may
be functionally analyzed by their co-expression along with
appropriate target genes and/or by protein–protein inter-
action assays (e.g., co-immunoprecipitation) under dif-
ferent conditions. In addition, promoter deletion assays or
perturbation of TF expression levels in a reporter system
could be used to further confirm the relationship between a
given TF and its target(s).

We selected budding yeast as a model organism, based on
the availability of microarray and binding site information.
However, our method should be easily applicable to higher
eukaryotes and other experimental conditions, provided
that sufficient binding site information is available. In the
future, it should be possible to add more complex features
of genetic regulatory networks to this analysis, such as
activation, inhibition, feedback loops and regulatory/
signaling proteins.
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