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ABSTRACT In this study, we investigate what
types of interactions are specific to their biological
function, and what types of interactions are persis-
tent regardless of their functional category in tran-
sient protein–protein heterocomplexes. This is the
first approach to analyze protein–protein interfaces
systematically at the molecular interaction level in
the context of protein functions. We perform system-
atic analysis at the molecular interaction level using
classification and feature subset selection technique
prevalent in the field of pattern recognition. To rep-
resent the physicochemical properties of protein–
protein interfaces, we design 18 molecular interac-
tion types using canonical and noncanonical interac-
tions. Then, we construct input vector using the
frequency of each interaction type in protein–pro-
tein interface. We analyze the 131 interfaces of tran-
sient protein–protein heterocomplexes in PDB: 33
protease-inhibitors, 52 antibody-antigens, 46 signal-
ing proteins including 4 cyclin dependent kinase
and 26 G-protein. Using kNN classification and fea-
ture subset selection technique, we show that there
are specific interaction types based on their func-
tional category, and such interaction types are con-
served through the common binding mechanism,
rather than through the sequence or structure con-
servation. The extracted interaction types are Ca��
H���O¼¼C interaction, cation���anion interaction, ami-
ne���amine interaction, and amine���cation interac-
tion. With these four interaction types, we achieve
the classification success rate up to 83.2% with leave-
one-out cross-validation at k¼ 15. Of these four inter-
action types, Ca��H���O¼¼C shows binding specificity
for protease-inhibitor complexes, while cation–anion
interaction is predominant in signaling complexes.
The amine ��� amine and amine���cation interaction
give a minor contribution to the classification accu-
racy. When combined with these two interactions,
they increase the accuracy by 3.8%. In the case of
antibody–antigen complexes, the sign is somewhat
ambiguous. From the evolutionary perspective,
while protease-inhibitors and sig-naling proteins
have optimized their interfaces to suit their biologi-
cal functions, antibody–antigen interactions are the
happenstance, implying that antibody–antigen com-
plexes do not show distinctive interaction types. Per-

sistent interaction types such as p���p, amide-car-
bonyl, and hydroxyl-carbonyl interaction, are also
investigated. Analyzing the structural orientations
of the p���p stacking interactions, we find that
herringbone shape is a major configuration in tran-
sient protein–protein interfaces. This result is differ-
ent from that of protein core, where parallel-dis-
placed configurations are the major configuration.
We also analyze overall trend of amide-carbonyl and
hydroxyl-carbonyl interactions. It is noticeable that
nearly 82% of the interfaces have at least one
hydroxyl-carbonyl interactions. Proteins 2006;65:
593–606. VVC 2006Wiley-Liss, Inc.
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INTRODUCTION

Proteins play a key role in controlling all the cellular
processes. When controlling biological processes, proteins
can specifically associate or dissociate depending on their
local environments and physiological conditions. A num-
ber of studies have been carried out to investigate the fun-
damental principles of protein–protein interactions.

Many research groups have looked into the represen-
tative parameters of protein–protein interfaces such as
interface size, shape, complementarity, residue propen-
sity, hydrophobicity, segmentation, secondary structures,
packing density. Using these representative parameters,
they have made a comparative study to identify the fea-
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tures that could potentially distinguish the different
types of protein–protein interfaces.1–9

For example, in one study,1 researchers have investi-
gated the interfaces using parameters such as accessible
surface area, chemical characters, packing density, and
free energy of association, and have shown that hydro-
phobicity is the major factor for the stability of protein–
protein interactions, while complementarity of hydrogen
bonds and van der Waals’ interactions are responsible
for the selectivity. More extensive study has been carried
out for the 15 protease-inhibitor complexes and 4 anti-
body–antigen complexes.3 According to this study, the
sizes of protein–protein interfaces are similar, and the
interfaces in oligomeric proteins are usually more hydro-
phobic than those involved in functional recognition. In
protein–protein complexes deposited in protein three-
dimensional structural database PDB,10 there are two
different types of protein complexes; homocomplexes and
heterocomplexes. Homocomplexes are usually considered
as permanent and optimized, whereas heterocomplexes
can also have such properties, or they can be transient.
Several parameters, such as size, shape, complementar-
ity, residue propensities, hydrophobicity, segmentation,
secondary structure, and conformational changes, have
been used to examine the characteristics between the
two types of protein interfaces.7 As the number of
known three-dimensional structures has been increased,
the more detail characterization among the transient
protein–protein complexes has been carried out.11,12 On
average, the interfaces have chemical properties that
are close to the average protein surface, and the same
packing density as the protein interior, although the
properties of individual complexes widely vary.11 In addi-
tion, it has been shown that it is difficult to discriminate
between different types of protein–protein complexes
based on the physicochemical and geometrical interface
properties such as the contact area, planarity, polarity,
shape complementarity, and pair potential.12 Moreover,
although all these studies analyzed the proteins of
known structure from PDB, their results were contradic-
tory in some cases. For example, some reports argue
that amino acid compositions of the interfaces from the
different types of protein complexes are similar,13–15 but
others report significant differences.8,11

Other research groups took notice of the role of an
individual residue in protein–protein interactions. Ala-
nine scanning mutagenesis study16 has shown that de-
spite the large size of binding interfaces, individual sin-
gle side chains can energetically contribute a large frac-
tion of the binding free energy.17,18 A computational
alanine scanning was also performed to probe protein–
protein interactions by calculating binding free ener-
gies.19,20 More systematic analysis has been carried out
using a alanine mutation database. It showed that, at
the level of individual side chains, there is little correla-
tion between buried hydrophobic surface area and free
energy of binding, contrary to the results for whole sur-
faces. The free energy of binding is not evenly distrib-
uted across interfaces. Instead, there are hot spots of

binding energy composed of a small subset of residues.
Tryptophan, tyrosine and arginine are enriched in these
hot spots and are surrounded by a shell of energetically
less important residues that most likely serve to occlude
bulk solvent from the hot spots.14

There were some efforts to correlate residues conserva-
tion in spatially similar environments with binging hot
spots.21–23 The structure of protein–protein interfaces has
been analyzed using geometrical hashing technique.24–26

The analysis of interface families showed a preference for
conservation of polar residues at their interfaces. In addi-
tion, structurally conserved interface residues are
strongly correlated with the experimentally identified hot
spots.21 The number of structurally conserved residues,
particularly of high ranking energy hot spots, increase
with the interface size, which implies that hot spots are
effectively distributed within the interface rather than
compactly clustered in them. Furthermore, the phenom-
enon that similar residue hot spots occur across different
protein families may suggest that affinity and specificity
are not necessarily coupled.22 Simple analysis of conserva-
tion patterns of protein–protein interfaces with respect to
the protein surface have shown that the interfaces have
been relatively more conserved than the protein surface
during evolution.27,28

Instead of looking into the protein structures at the
level of amino acid residues or more coarse-grained level
of descriptions, several studies were concentrated on the
role of specific molecular interaction types such as hydro-
gen bonds, salt bridges, and hydrophobic interactions.
Comprehensive studies with such type of approach have
been carried out in a number of studies on protein stabil-
ity, while a few studies on protein interfaces with limited
scope have been reported. Although hydrogen bonds, salt
bridges, and hydrophobic interactions are considered to
be the major determinants of protein stability, in recent
years noncanonical interactions, such as interactions
involving p-system and Ca��H���O hydrogen bonds, have
been shown to be of much greater importance than previ-
ously thought.29–36 A comprehensive structural analysis
of X[]H���p hydrogen bonding(X¼¼N, O, S) in three-dimen-
sional protein structure has been performed. It has
shown that the most efficient p-acceptor is the side chain
of Trp. Numerous examples are found where peptide
X�H���p interactions play important roles in stabilization
of helix termini, strand edges, b-bulges, and regular
turns.29 An investigation of the p��p stacking interac-
tions in protein core has shown that the relative orienta-
tion is an off-centered parallel orientation.30 A detail
analysis of the extent and nature of cation��p interac-
tions has been performed using energy-based criterion. It
is demonstrated that when a cationic side chain (Lys or
Arg) is near an aromatic side chain (Phe, Tyr, or Trp),
the geometry is biased toward one that would experience
a favorable cation��p interaction.31 The geometrical anal-
ysis of cation��p and amide��p interactions has also been
performed.37–39 Recently, some research groups tried
to investigate the role of noncanonical interactions in
protein–protein interfaces. A statistical potential has
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been developed to quantitatively describe the Ca��H���O
hydrogen bonding interaction in the protein–protein
interfaces. It suggests that the weak Ca��H���O hydrogen
bond makes an important contribution to the association
and stability of protein complexes.33 The cation��p inter-
actions involving arginine in protein–protein interface
has been investigated.36

The values of the representative parameters men-
tioned earlier are largely overlapped, though on average,
they show a tendency depending on types of protein
complexes.7,11,12 Consequently, they have limited power
for distinguishing the interfaces of different types of pro-
tein complexes. Hot spot analysis can be used to distin-
guish interface from the remainder of surface, but it can
have difficulties to distinguish the interfaces of different
types of protein complexes. This is because similar resi-
due hot spots occur across different protein family.22

Most of the studies about specific molecular interac-
tion types have been focused on the core of the protein
more than the protein–protein interface, primarily be-
cause the absolute size of data set of protein–protein in-
terfaces is relatively small. Recently, the number of
three dimensional crystal structures has been sharply
increased with the development of structural genomics,
but few attempts have been made to investigate the
meaning of a specific interaction type in the context of
protein functions. There was a paper that presents clas-
sifications between crystal contacts and biological con-
tacts on the basis of feature vectors.40 But, there are no
attempts to correlate interaction types with function of
proteins. The systematic analysis of protein–protein in-
terfaces at the interaction level can give us more infor-
mation about specificity and selectivity of protein–pro-
tein interactions.
In this study, we perform systematic analysis of the

interfaces of different types of transient protein hetero-
complexes at the molecular interaction level to find out
whether there are some distinct interaction types spe-
cific to the functional category.
We think that the local environments or physiological

conditions of a protein as well as the properties of a pro-
tein itself are important to the protein’s specific func-
tion, and proteins in the same functional category per-
form their functions under the similar environments.
Transient protein–protein interfaces associate or dissoci-
ate at least once during their cellular processes, and so
they have more chance to reflect their local environ-
ments or physiological conditions into their interfaces
than permanent ones. As a result, the differences of mo-
lecular interaction types in transient protein–protein
interfaces can be more apparent than those of molecular
interaction types in the permament ones. In addition,
although in some cases, homocomplexes are transient, in
many cases, transient complexes are restricted to hetero-
complexes only.40 For these reasons, we choose transient
heterocomplexes as our dataset.
Transient heterocomplexes can be subdivided into sub-

functional categories, but as usual, the distinction of
such complexes is not clear-cut in biology. Furthermore,

subcategories have limited size of data to be analyzed.
So, in this study, we utilize a traditional but rough func-
tional category such as protease-inhibitors, antibody–
antigens, and signaling complexes.

To represent the physicochemical properties of pro-
tein–protein interfaces, we design 18 plausible interac-
tion types using canonical and noncanonical interac-
tions. Then, we construct input vector, so called feature
vector, using the frequency of each interaction type. We
apply these input vectors to the analysis of the 131 tran-
sient protein–protein interfaces in PDB: 33 protease-in-
hibitor, 52 antibody–antigen, 46 signal transduction
including 4 cyclin dependent kinase, and 26 G-protein.
By using k-nearest neighbor (kNN) classifier and feature
selection method, we show that there are function spe-
cific interaction types in transient protein complexes,
and we also examine some persistent interations. In
addition, we discuss the biological role and evolutionary
perspectives of specific binding interactions.

MATERIALS AND METHODS
Generation of the Data Set

The initial data set of three functional classes of tran-
sient protein–protein heterocomplexes is obtained from
the Protein Data Bank10 query system. To search for
protease-inhibitor complexes, keywords such as ‘‘prote-
ase inhibitor’’ and ‘‘protease AND inhibitor’’ are used.
For antibody–antigen complexes, the keywords ‘‘antibody
antigen’’ and ‘‘antibody AND antigen’’ are used. For sig-
nalling complexes, keywords such as ‘‘cyclin dependent
kinase’’, ‘‘G-protein’’, and ‘‘signal transduction’’ are used.
During query process, we use 50% sequence identity as
a cutoff value, and experiment techniques are confined
only to X-ray diffraction. To this initial data set, we add
transient heterocomplexes data used in the previous
studies11,12 according to their functional category. Of
these collected data, we retain the data that have better
resolution than 3.5 Å. When more than one complex is
present in the asymmetric unit, only one copy is re-
tained. Protein heterodimers are selected if the interfa-
ces have more than 25 interacting residue pairs. The
proteins are considered as nonhomologous on the basis
that they have a sequence identity of <30% and SSAP41

score �80%. The protein heterodimers are selected such
that one or both components of each complex are nonho-
mologous to the components in the other complexes, and
so within the data set, the interfaces in each functional
class are nonhomologous. We also manually confirm this
using SCOP database,42 and present as a table, with the
SCOP fold classification of each complexes, in the sup-
plementary materials (Table S1–Table S6). The sequence
identity and SSAP score can be obtained using CATH43

query system. In the case of antibody–antigen com-
plexes, although homologous pairs are included (e.g.,
antibody-lysozyme complexes), the sites of recognition on
the lysozyme are different. Theoretical positions of hy-
drogen atoms are then added with program REDUCE.44

Finally, we obtain 131 nonredundant protein–protein
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interfaces shown in Table I, which consist of 33 prote-
ase-inhibitor, 52 antibody–antigen, and 46 signal trans-
duction.

Definition of Interaction Type

We define 18 molecular interaction types composed of
canonical hydrogen bondings, noncanonical hydrogen
bondings, ion–ion interactions, and p-ring system related
interactions. The selection criteria for the 18 interaction
types are referred to the previous work.29–31,33,34 Canon-
ical hydrogen bonds involve X��H���O¼¼C(X¼¼N, O,
CONH��) and X��H���Y (X or Y¼¼N, O, S, CONH��)
hydrogen bonds. In X��H���O¼¼C, the selection criteria
are H���O distance (�4.5 Å) and X��H���O angle (>908).
In the case of X��H���Y, H���Y distance (�4.5 Å) and
X��H���Y angle (>1208), are adopted. They are known as
an energetically stable criteria in canonical hydrogen
bonding. H��N���Cation (cation ¼ LYS, ARG), and
N��H���Anion (anion ¼ ASP, GLU) are also involved in
the canonical hydrogen bonds. The selection criteria are
same as those of X��H���Y type hydrogen bond. The
effect of distance and angle criteria for the conventional

hydrogen bonds is shown in the supplementary materi-
als (Figure S2 and Table S7).

Noncanonical hydrogen bonds considered in this work
are Ca��H���O¼¼C, Ca��H���p, and X��H���p(X¼¼N, O,
CONH��) hydrogen bonds. For Ca��H���O¼¼C hydrogen
bond, we choose the distance cutoff as �4.5 Å and the
angular cutoff as >908, which have been proved to be an
energetically stable criteria in many experiments.33,34,45

For X��H���p(X¼¼Ca, N, O, ��CO��NH), the distance and
angular cutoff criteria are shown in Figure 1. As a dis-
tance cutoff, the limit X��M<4.3 Å was selected and a
cutoff angle x(X) < 258 was chosen based on the previ-
ous work.29,37,38

We define canonical ion–ion interactions as the inter-
actions between cationic (LYS, ARG) and anionic resi-

TABLE I. PDB Codes and Chain ID of Three Functional Classes of Transient Protein-Protein Complexes

Protease-inhibitors Antibody–antigens Signaling proteins

1acb:EI 1hia:YJ 4cpa:�I 1ao7:AC 1jhl:LA 1qle:BH 3hfl:LY 1a02:NF 1g3n:AC 1n4m:AC
1avg:HI 1jmo:HA 1cz8:VY 1jhl:HA 1r3j:AC 3hfl:HY 1a0o:AB 1g6g:AE 1ol5:AB
1avw:AB 1mct:AI 1dee:DG 1jps:LT 1r3j:BC 3hfm:LY 1a2k:AD 1gg2:BG 1omw:AB
1bai:AC 1mkw:HK 1dvf:BD 1jps:HT 1sbb:AB 3hfm:HY 1agr:AE 1got:AB 1rrp:AB
1cbw:GI 1oyv:AI 1fdl:LY 1lk3:AL 1sy6:LA 1am4:AD 1got:BG 1tx4:AB
1cbw:HI 1pxv:BD 1fdl:HY 1lk3:AH 1sy6:HA 1azs:AC 1gzs:AB 1ukv:GY
1cho:EI 1r0r:EI 1fe8:AH 1mq8:AB 1tqb:AB 1bkd:RS 1h4l:AD 1wa5:AB
1cse:EI 1slu:AB 1fe8:AL 1mvf:AD 1tqb:AC 1blx:AB 1hel:AC 1wa5:AC
1df9:AC 1stf:EI 1fjl:AF 1nca:NL 1txv:AL 1cly:AB 1i2m:CD 1wmh:AB
1dpj:AB 1tmq:AB 1fjl:BF 1nca:NH 1txv:AL 1cxz:AB 1ibr:AB 1wq1:RG
1dtd:AB 1toc:BR 1fsk:AB 1nsn:LS 1v7m:LV 1doa:AB 1ikn:AC 1ycs:AB
1eai:AC 1tx6:BI 1fsk:AC 1nsn:HS 1v7m:HV 1e96:AB 1ikn:AD 1zbd:AB
1f34:AB 1v5i:AB 1gh6:AB 1obl:AC 1w72:DI 1efn:AB 1kjy:AB 2trc:BP
1fle:EI 2sic:EI 1hez:AE 1obl:BC 1w72:DM 1efu:AB 1kps:CD 3fap:AB
1gl1:AI 3sgb:EI 1i9r:AH 1ots:BE 1wej:HF 1f5q:AB 1kz7:AB
1hia:XJ 3tpi:ZI 1i9r:AL 1pqz:AB 2jel:LP 1foe:AB 1m2o:AB

Fig. 1. Geometric parameters in X��H���p hydrogen bonds. M is the
ring center, x(x) is the angle between the X���M line and the surface
normal.

Fig. 2. Geometric parameters in p���p system. (a) Structural param-
eters to represent axially symmetric system. (b) Spherical polar coordi-
nates for the relative pair orientation of p�p system.
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dues (ASP, GLU) with a distance less than 6.0 Å.31

When calculating the distance, we consider the Ce/Nf of
LYS, Cd/Ne/Cf/Ng of ARG, Cg/Od of ASP, and Cd/Oe of
GLU. p-ring system related interactions include p���p
and p���Cation interaction. A large number of experimen-
tal and theoretical studies have demonstrated that p���p
interactions play an important role in molecular recogni-
tion.30,46,47 There was a study about p���p stacking inter-
action for the protein core,30 but no study on p���p stack-
ing interaction in protein–protein interfaces has been
reported. p���ring system can be represented in terms of
ring centroid, surface normal vector. The relative struc-
tural orientation between p-ring system can be described
by the centroid–centroid separation, Rcen, closest contact
distances, Rclo, a center to normal angle, y, and a normal
to normal angle, g. This is depicted in Figure 2. In this
study, we use Rcen < 7.5 Å or Rclo < 4.5 Å, which is
described in the previous work30 and confirmed by our
analysis with 3799 nonredundant interface data set from
Nussinov’s group.26

In p���Cation, we calculate the distance between the
center of the p-ring and Ce/Nf of LYS or Cd/Ne/Cf/Ng of
ARG. The cutoff range we used is <6.31 We summar-
ized these interaction types in Table II, and each inter-
action type is represented with index in Table III.
Hereafter we use the index to represent each interac-
tion type.

Classification

Once we represent a protein–protein interaction inter-
face as a vector representation using 18 plausible inter-
action types, we can take advantage of many useful
methods, which is prevalent in the field of multivariate
analysis and pattern recognition. k-Nearest neighbor48

is a nonparametric classification technique that has been
shown to be effective in statistical pattern recognition
applications. It can achieve a high classification accu-
racy in problems that have unknown and non-normal
distributions. The principle is very simple. Given a data
set (xi, yi), it estimates values of y for x other than
those in the sample using the distance metric and ma-
jority vote. Usually, distance metric is Euclidean (Eq. 1),

though any other Lp-norm, such as Mahalanobis dis-
tance, can be used.

kx� xik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j

ðxj � xijÞ2
vuut ð1Þ

We construct input vector, so called, feature vector,
using the frequency of each interaction type in the pro-
tein–protein interfaces. To select the appropriate distance
metric, and to view the distribution of data prior to classi-
fication, principal component analysis (PCA) is carried out
using singular value decomposition (SVD) technique. The
results indicates that if we use 18 plausible interaction
type, we can discriminate among three functional catego-
ries and it is possible to reduce dimension of input vector
sharply. We apply kNN classification with leave-one-out
cross-validation.

Feature Subset Selection

To extract function-specific interaction types, we use
feature subset selection techniques, which are roughly

TABLE II. 18 Plausible Interaction Types

Interaction type

Main chain Side chain

N��H O¼¼C Ca��H p ��OH ��CONH2 ��SH �–charge �–charge

Main chain N��H xa x – x x x x x –
O¼¼C – x – x x – – –
Ca��H – x – – – – –
p x x x – x –
��OH – x – – –

Side chain ��CONH2 – – – –
��SH – – –
�–charge – x
�–charge –

a ‘‘x’’ means interaction type involved in the analysis.

TABLE III. Index of each Interaction Type

Index Interaction type

0 p���p
1 p���cation
2 p���amide
3 p���hydroxyl
4 p���amine
5 p���H��Ca

6 amine���amine
7 amine���carbonyl
8 amine���hydroxyl
9 amine���cation

10 amine���anion
11 amide���carbonyl
12 amide���amine
13 amide���hydroxyl
14 carbonyl���hydroxyl
15 Ca��H���O¼¼C
16 cation���anion
17 amine���thiol
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categorized into three approaches: wrapper, filter, and
embedded methods.49,50 Wrapper methods utilize learning
machine as a black box to select subsets of variables
based on their predictive power. Filter methods are inde-
pendent of the classifier and select features based on
properties that good feature sets are presumed to have,
such as class separability or high correlation with the tar-
get. Embedded methods perform variable selection in the
process of training and are usually specific to given learn-
ing machines. In our study, we adopt sequential forward
selection, which is classic greedy wrapper, with kNN clas-
sifier as a predictor. In the first iteration, sequential for-

ward selection tests all feature subsets with only one fea-
ture. The feature subset with the highest accuracy is cho-
sen as the basis for the next iteration. In each iteration,
the algorithm tentatively adds each feature, which is not
previously selected, to the basis and retains the feature
subset that results in the highest prediction accuracy. We
carry out this experiment with the help of free software
package LNKnet from MIT Lincoln Laboratory, which
contains many useful classification and feature se- lection
algorithm. With the help of feature subset selection tech-
nique, we can identify distinct interaction types specific
to their functional categories.

RESULTS
Specific Binding Interaction Types

Before classification, we perform principal component
analysis (PCA) using singular value decomposition (SVD)
technique to test the usefulness of 18 plausible interac-
tion types and to check the shape of data distribution.
As we can see from Figure 3, PCA clearly shows that 18
plausible interaction types can have a good discriminat-
ing power for three different types of protein–protein
interfaces. We perform kNN classification with leave-
one-out cross-validation, and we can get 78% of accuracy
at k ¼ 9. In Figure 4, we report the classification accu-
racy according to the change of k-value. This clearly
proves the usefulness of a set of interaction types as a
discriminator for transient protein–protein interfaces.

Though PCA and kNN classification are quite effective
to show the usefulness of 18 interaction types to discrimi-
nate three functional classes of transient protein–protein
interfaces, they are not effective to investigate whether
there are distinct interaction types specific to their func-
tional category in original input space. This is because
newly generated variables in PCA are the results of linear
combination of original variables. In addition, if the num-

Fig. 3. 2-dimensional and 3-dimensional principal component analy-
sis (PCA). Protease-inhibitor complexes are represented by blue labels,
antibody–antigen complexes by red labels, and signaling complexes by
green labels. In 2-dimensional PCA, antibody–antigens seem to be
mixed up with signaling compelxes, but in 3-dimensional PCA, there is
a clear separation among three functional classes of transient protein–
protein interfaces. The shape of data distribution shows that it is possi-
ble to distinguish three functionally different classes of transient pro-
tein–protein interfaces using 18 plausible interaction types.

Fig. 4. Discriminating power of 18 plausible interaction types. The
accuracy distribution according to k-value shows the usefulness of 18
plausible interaction types as a discriminator for three functionally dif-
ferent classes of transient protein–protein interfaces. kNN classification
is performed with leave-one-out cross-validation, and 78% of accuracy
is obtained at k ¼ 9.
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ber of samples are relatively small with respect to the
number of features, overfitting problem may happen. To
identify relatively distinct interaction types from 18 inter-
action types and to reduce the dimensionality of the input
data, we adopt feature subset selection technique, which
is widely used in the field of pattern recognition. There
are a lot of method to use, but in this study, we use kNN
classifier as learning machine, and we use forward direc-
tion as a search direction with leave-one-out cross-valida-
tion. The cross-validation error rate is calculated as each
feature is added. Each feature is tested to find the one
which is most effective in classifying the data by itself.
The remaining features are then paired with the first and
the best is selected as the second feature. Features are
added in this way until there are no more left. The result
is shown in Figure 5. When we use the first four interac-
tions(index ¼ 15, 16, 6, and 9), the experiment shows the
lowest error rate.
It means that, of 18 plausible interaction types, we

achieve the best performance when using four in- terac-
tion types, which involve Ca��H���O¼¼C interaction
(index ¼ 15), ion–ion interaction (index ¼ 16), NH���NH
(index ¼ 6), and amine���cation (index ¼ 9) interaction.
By doing so, we can reduce input dimension from eight-
een to only four, and show that these four interaction
types are the major factors to discriminate three differ-
ent functional classes of protein–protein interfaces. The
ion–ion interactions are specific to signal transduction
complexes, and Ca��H���O¼¼C interactions are relatively
more specific to protease-inhibitor complexes. The NH���
NH and amine���cation interaction give a minor contribu-
tion to the classification accuracy. When combined with
these two interactions, they increase the accuracy by
3.8%. In the case of amine���cation interaction, the differ-

ence of the frequency is rather small. However, when it
is combined with the other interactions, it shows dis-
criminating power, especially between signaling com-
plexes and antibody–antigens. It shows that a variable
that is largely useless by itself can provide a significant
performance improvement when taken with others.50

These results are consistent with the average frequency
of each interaction type in Figure 6. Using only these
specific binding interaction types, we perform kNN clas-
sification with leave-one-out cross-validation, and we
obtain 83.2% classification accuracy at k ¼ 15. In Figure
7, we report the classification accuracy according to the

Fig. 5. Feature subset selection. The cross validation error rate
achieved as each feature is added. Each feature is tested to find the
one which is most effective in classifying the data by itself. The remain-
ing features are then paired with the first and the best is selected as
the second feature. Features are added in this way until there are no
more left. The feature sets are tested using kNN classifier using leave-
one-out cross validation. The most favorable feature set’s indexes are
15, 16, 6, and 9, corresponding to Ca��H���O¼¼C, cation–anion, NH���NH,
and Amine���cation interaction.

Fig. 6. Average frequency of each interaction type. The Ca��H���
O¼¼C (index ¼ 15) interaction shows the highest frequency in protease-
inhibitor complexes, and the differences of average frequency between
the three functional classes are significant. The NH���NH (index ¼ 6)
and NH���O¼¼C (index ¼ 7) interaction show similar pattern, but the dif-
ference of average frequency between antibody–antigen complexes
and signaling complexes is relatively small. The cation–anion interac-
tions (index ¼ 16) show the highest frequency in signaling complexes
and significant difference over other functional classes. Other interac-
tions show similar pattern of frequency regardless of the functional
classes.

Fig. 7. Accuracy of kNN classification using only four specific bind-
ing interactions. We perform kNN classification with leave-one-out cross
validation, and achieved 83.2% classification accuracy at k ¼ 15.
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change of k-value. This classification accuracy shows a
clear improvement over an accuracy achieved by consid-
ering amino acid pair frequency. When the frequency of
210 interacting residue pairs are used as a feature vec-
tor, the classification accuracy is 73.2% at k ¼ 1, and as
the k-value increases, the classification accuracy goes
down. The results are shown in the supplementary
materials (Figure S1).
At k ¼ 15, we examine the error rate according to

each functional class. The error rate of protease-inhibi-
tors is 24.24%, and that of antibody–antigens is 9.62%.
The signaling proteins have 19.57% error rate. The aver-
age error rate is 16.79%. The results are shown in Table
IV. In leave-one-out cross-validation, we misclassify 7
protease-inhibitors as antibody–antigens and 1 protease-
inhibitor as signaling protein. As the same way, we mis-
classify 4 antibody–antigens as protease-inhibitors, 1
antibody–antigens as signaling proteins, red signaling
complexes as protease-inhibitors, and 7 signaling pro-
teins as antibody–antigens. The classification confusion
matrix of prediction results is reported in Table V.
The NH���NH interaction and NH���O¼¼C interaction

are highly correlated with the Ca��H���O¼¼C interaction,
so it does not contribute largely to the performance of
classification. But they are also specific to protease-in-
hibitor complexes.

Persistent Interaction Types

There are some interaction types that do not show dis-
criminating power, but show persistent occurrences in

all three types of transient protein–protein interfaces.
Here, ‘‘Persistent interaction’’ is defined as the interac-
tion satisfying the following two equations, Eq. 2 and
Eq. 3.

A ¼
PFc

i¼1

nðfci; IÞ
Fc

� Ea; 8c ¼ 0; 1;2 ð2Þ

R ¼
P2
c¼0

PFc

i¼1

mðfci; IÞ
P2
c¼0

Fc

3100

� Er;withmðfci; IÞ ¼ 1 if nðfci; IÞ > 0

0 otherwise

�
ð3Þ

In Eq. 2, ‘‘A’’ is defined as the average number of fre-
quencies of a specific interaction type, I, over a specific
class, c. The fci is an ith interface in class c, and I is one of
the interactions involved in 18 interaction types. The Fc is
the total number of interfaces in class c. The n(fci, I) repre-
sents the number of interaction, I, on the interface, i, in
class c. If there are 73 p���p interactions in 33 protease-
inhibitors, then ‘‘A’’ value is 2.2, calculated by 73/33. ‘‘Ea’’
value is the expected occurrences of a specific interaction
type, I, on a specific interface. The data set contain 131
interfaces and 18 features, and the observed total number
of interactions are 3743 over the 131 interfaces. So, Ea

value is 1.6, calculated by 3743/(131*18). In Eq. 3, the ‘‘R’’
is defined by the average ratio of the interfaces having non-
zero occurrences of a specific interaction type, I, over the
131 interfaces. If there are 84 interfaces having nonzero
p���p interactions in the 131 interfaces, the the ‘‘R’’ value is
64%, calculated by (84/131)*100. ‘‘Er’’ value is defined as
the expected average ratio of the interfaces having nonzero
occurrences of a specific interaction type, I, over the 131
interfaces. The observed total number of interfaces having
nonzero occurrences are 1202 over the 18 features, so the
Er value is 50, calculated by {1202/(131*18)}*100. The inter-
actions satisfying the above two criteria (A� 1.6 \ R � 50)
are p���p, amide-carbonyl, and hydroxyl-carbonyl interaction.
p���p interaction has 2.4 average number of frequencies.
Even though there is a large variation depending on each
interface, over 64% of the interfaces have at least more
than one p���p interaction. Furthermore, in signal transduc-
tion complexes, over 80% of interfaces have nonzero p���p
interactions. This result is shown in Table VI.

The relative orientation of one p-ring with respect to
another is analyzed by a center-normal angle, y, a nor-
mal-normal angle, g. In this analysis, we only consider
dimers, and do not consider trimers. The population dis-

TABLE IV. The Error Rate of each Functional Class at K = 15

Class Patterns No. errors % Errors Std Dev RMS error Label

Protease-inhibitors 33 8 24.24 7.5 0.372 0
Antibody–antigens 52 5 9.62 4.1 0.289 1
Signal transduction 46 9 19.57 5.8 0.344 2
Total 131 22 16.79 3.3 0.331

TABLE V. The Classification Confusion Matrix
of Prediction Results at K = 15

Desired class

Computed class

Total0a 1b 2c

0a 25 7 1 33
1b 4 47 1 52
2c 2 7 37 46
Total 31 61 39 131

aProtease-inhibitors.
bAntibody–antigens.
cSignaling proteins. In leave-one-out cross-validation, 7 protease-in-
hibitors are misclassified as antibody-antigens, and 1 protease-in-
hibitor as signaling protein. As the same way, 4 antibody-antigens
are misclassified as protease-inhibitors, 1 antibody-antigens as sig-
naling proteins, 2 signaling complexes as protease-inhibitors, and 7
signaling proteins as antibody-antigens.
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tributions of y and g, are analyzed and corrected for
spherical polar and Euler angle probability bias.30 In
Figure 8, though there can be a variety of combinations
of y and g, we can observe that y distribution have peaks
around 15–208 and the g distributions have peaks around
5–108. This shows that in transient protein–protein in-
terfaces, herringbone shape is a major configuration. This
result is different from the configuration in the protein
core, where parallel-displaced configurations are major.

The four different types of p���p stacking interactions are
shown in Figure 9.47 The result of amide–carbonyl and
hydroxyl–carbonyl group interactions are also shown in
Table VI. It is noticeable that nearly 82% of the interfa-
ces has at least more than one hydroxyl–carbonyl inter-
actions.

DISCUSSION

Protein–protein interfaces contain a variety of interac-
tions, including hydrogen bonding, salt bridges, water
bridging interactions and hydrophobic interactions.51,52

It is well known that a delicate balance of various weak
and strong noncovalent interactions contributes to the
stability and selectivity of protein–protein complexes.
protein–protein interactions are the results of dynamic
processes between proteins or between proteins and
their local environments. Local environments or physio-
logical conditions of a protein as well as the properties
of a protein itself, are important to the protein’s specific
function, and proteins in the same functional category
perform their functions under the similar environments.
Transient protein–protein interfaces associate or dissoci-
ate at least once during their cellular processes, so they
have more chance to reflect their local environments or
physiological conditions into their interfaces than per-
manent ones. As a result, the differences of molecular

TABLE VI. Overall Trend of Persistent Interactions

Category

p���p Amide-carbonyl Hydroxyl–carbonyl

avga nb/tc ratio (%)d avga nb/tc ratio (%)d avga nb/tc ratio (%)d

Protease-inhibitor 2.2 19/33 57.6 2.1 24/33 72.7 2.0 31/33 93.9
Antibody–antigen 1.8 28/52 53.8 1.6 30/52 57.6 1.8 38/52 73.1
Signal transduction 3.2 37/46 80.4 2.9 35/46 76.1 1.9 38/46 82.6
Total 2.4 84/131 64.1e 2.2 89/131 68.8e 1.9 107/131 81.7e

aAverage number of frequencies (A) calculated from Eq. 2.
bThe number of interfaces having non zero occurrences.
cTotal number of interfaces in each class.
dThe percent ratio of n/t.
eR, calculated from Eq. 3.

Fig. 8. y and g angle distribution of 314 p��p interactions in three
functional classes of transient protein–protein interfaces. The y distribu-
tions have maximum peak around 15–208 and the g distributions have
maximum peaks around 5–108. These results show that in three func-
tional classes of transient protein–protein interfaces, herringbone shape
(Fig. 9) is a major configuration.

Fig. 9. Schematic diagram of the four different orientations of p���p
stacking interactions.
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interaction types in transient protein–protein interfaces
can be more apparent than those of molecular interac-
tion types in the permanent ones. Therefore, it is rea-
sonable that the transient proteins in the same func-
tional category recognize their interacting partners by
certain types of molecular interactions that are specific
to their own protein family members and their local en-
vironments. As a result, proteins can show specific bind-
ing interactions according to their functional classes of
protein–protein interfaces. If the binding region of one
component of transient protein–protein interfaces re-
mains unchanged irrespective of their partners, not only
specific binding interaction but also interaction topology

itself can be conserved through common binding mecha-
nism, even though there is a large variation of inter-
action pairs at the residue level. In this study, we do
not deal with all the possible interactions, but we just
use 18 plausible interaction types, containing canonical
hydrogen bondings, noncanonical hydrogen bondings,
ion–ion interactions and p-ring system related interac-
tions. Nevertheless, they show good discriminating
power for the three functional classes of transient pro-
tein–protein interfaces. Furthermore, only four distinct
interaction types are enough to distinguish the three
functional classes of transient protein–protein inter-
faces.

TABLE VII. Amino Acid Residue Pairs Showing Conservation of Ca��H���O¼¼C Interactions
in Protease-Inhibitor Interfaces

1acb:EI PHE(41)a MET(192) GLY(193) SER(195) SER(214) TRP(215) SER(217) SER(218)
ASP(46) LEU(45) LEU(45) LEU(45) THR(44) VAL(43) SER(41) SER(41)
LEU(47) ASP(46) ASP(46) THR(44)

1avw:AB PHE(41) GLN(192) GLY(193) SER(195) TRP(215) GLY(216) SER(217) SER(218)
ILE(564) ARG(563) ARG(563) ARG(563) PRO(561) PRO(561)

ILE(564) ARG(563)
ARG(565)

1cbw:HI MET(192) GLY(193) SER(195) SER(214) TRP(215) GLY(216) SER(217) SER(218)
LYS(15) LYS(15) LYS(15) CYC(14) PRO(13) PRO(13) PRO(13) GLY(12)
ALA(16) ALA(16) PRO(13)

1cho:EI PHE(41) GLN(192) GLY(193) SER(195) TRP(215) SER(217)
GLU(19) GLU(19) LEU(18) LEU(18) CYS(16) PRO(14)
TYR(14) GLU(19) ALA(15)

1eai:AC THR(41) GLN(192) GLY(193) SER(195) SER(214) PHE(215) VAL(216) SER(217) LEU(218)
MET(32) LEU(31) LEU(31) LEU(31) PRO(30) CYS(29) PRO(28) THR(27) GLY(43)

1fle:EI THR(41) GLY(193) SER(195) SER(214) PHE(215) VAL(216) SER(217)
MET(25) ALA(24) ALA(24) CYS(23) ARG(22) ILE(21) LEU(20)

CYS(23)
1gl1:AI PHE(41) MET(192) GLY(193) SER(195) SER(214) TRP(215) GLY(216) SER(217) SER(218)

LYS(31) LEU(30) LEU(30) LEU(30) THR(29) CYS(28) ALA(27) ALA(26) ALA(26)
ALA(32) LYS(32) LYS(31)

1jmo:HA LEU(41) GLY(193) ALA(195) SER(214) TRP(215) GLY(216) GLU(217)
SER(445) LEU(444) LEU(444) PRO(443) MET(442) PHE(441) GLY(440)

SER(445)
1mct:AI PHE(41) GLN(192) GLY(193) SER(195) SER(214) TRP(215) GLY(216) TYR(217)

ILE(6) PRO(4) ARG(5) ARG(5) PRO(4) CYS(3) ILE(2) ARG(1)
TRP(7) ARG(5)

ILE(6)
1slu:BA PHE(41) GLN(192) GLY(193) SER(195) PHE(215) GLY(216) TYR(217)

MET(85) MET(84) MET(84) MET(84) SER(82) VAL(81) PRO(80)
HIS(86) MET(85) MET(85)

1tx6:BI PHE(41) GLN(192) GLY(193) SER(195) SER(214) TRP(215) GLY(216) TYR(217)
SER(77) THR(75) ARG(76) ARG(76) THR(75) CYS(74) ILE(73) ALA(72)
ASN(78) SER(77) SER(77) THR(75)

3sgb:EI ARG(41) GLY(193) SER(195) SER(214) GLY(215) GLY(216) SER(217)
GLU(19) LEU(18) LEU(18) THR(17) CYS(16) ALA(15) PRO(14)

THR(17)
3tpi:ZI PHE(41) GLN(192) GLY(193) SER(195) SER(214) TRP(215) GLY(216)

ALA(16) CYS(14) LYS(15) LYS(15) CYS(14) PRO(13) PRO(13)
ARG(17) LYS(15) ALA(16)

ALA(16)

aThe number in the parenthesis represents the sequence number. The table summarizes the interacting residue pairs maintaining the con-
servation of Ca��H���O¼¼C interactions in the interfaces composed of chymotrypsin family and its interacting inhibitor. For example, PHE(41)
of a��chymotrypsin interacts with ASP(46) and LEU(47) of eglin C in 1acb, and GLU(19) and TYR(20) of PMP-C in 1gl1. There are changes
in interacting residue pairs, but Ca��H���O¼¼C interactions remain unchanged.
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In protease-inhibitor interfaces, backbone–backbone
interactions (e.g. NH���NH, NH���O¼¼C, and Ca� H���O¼¼C
interaction) are predominant, and the binding specificity
is controlled by Ca��H���O¼¼C interactions. The impor-
tance of Ca��H���O¼¼C interactions for the stability and
specificity of protein–protein interactions has been al-
ready shown in several studies.32,33 When we examine
protease-inhibitor interfaces in more detail, we find that
the Ca��H���O¼¼C interaction topology is conserved,
while there is a large variation of interacting pair at the
residue level. For example, 1acb and 1gl1 in PDB are
the 3-dimensional structures of serine protease and its
inhibitor. Protease components are a-chymotrypsin and
inhibitor components are eglin C in 1acb and PMP-C in
1gl1, which are nonhomologous. At the residue level, the
inhibitor’s residues interacting with a-chymotrypsin in
the interfaces, are quite different from each other. For
instance, PHE41 of a-chymotrypsin interacts with ASP46

and LEU48 of eglin C in 1acb, and GLU19 and TYR20 of
PMP-C in 1gl1. However, Ca�� H���O¼¼C interactions
remain unchanged. In Table VII, we summarize inter-
acting residue pairs keeping up Ca��H���O¼¼C interac-
tions in each interface. We also depict the Ca��H���O¼¼C
interaction topology in Figure 10. The conservation of
Ca��H���O¼¼C interaction topology is also observed in
other protease-inhibitor interfaces.
In signalling proteins, which are mainly composed of

G-proteins and cyclin dependent kinases, the binding
specificity is controlled by cation–anion interactions. In
Table VIII, we list interacting residue pairs keeping up
cation–anion interactions in the interfaces composed of
small GTPase RAN and its partner. To sustain cation–
anion interactions, cation changes are limited to the
LYS and ARG, and anion changes are confined to the
GLU and ASP. Therefore, it is difficult to find examples
to describe the conservation of cation–anion interaction
topology. However, like protease-inhibitors, it also shows
the conservation of cation–anion in- teraction topology.
For example, 1ibr and 1i2m involve small GTPase pro-
tein RAN, and RAN’s interaction partner is importin b-
subunit, nuclear transport receptor, in 1ibr and regula-
tor of chromosome condensation(RCC1) in 1i2m. The
global structures of the interfaces are quite different
from each other, and binding region is partly overlapped
with each other. Nevertheless, cation–anion interaction
topology is conserved on the overlapping region, even
though there are some changes in the residue pairs.
ASP(77) interacts with LYS(62) in 1ibr, but ARG(320) in
1i2m. ASP(107) interacts with two LYS(62), LYS(68) in
1ibr, but two ARG(320), ARG(325) in 1i2m. Also, they
maintain ARG(106)-ASP(160), ARG(140)-ASP(288) in
1ibr, and ARG(106)-ASP(384), ARG(140)-ASP44 It shows
that even though there are changes at the residue level,
proteins maintain their specific cation–anion interac-
tions. We depict cation–anion interaction in Figure 11.
In the case of antibody–antigens, the sign is somewhat
ambiguous. From the evolutionary perspective, while
protease-inhibitors and signaling proteins have opti-
mized their interfaces to suit their biological function,

antibody–antigen interactions are the happenstance,
implying antibody–antigen complexes do not show dis-
tintive interaction types. In limited scope, a previous
work54 has shown that the selectivity of the binding of
the protein family is achieved by conserved hydrogen
bonds.

It should be emphasized that our study is the first sys-
tematic approach to analyze protein–protein interfaces
at the molecular interaction level in the context of pro-
tein functions. Our study clearly shows that there are
specific interaction types based on their functional
classes of protein–protein interfaces, and several specific
interactions are conserved according to the functional
classes of protein–protein interfaces through the com-

Fig. 10. Conservation of Ca��H���O¼¼C interaction topology across
the interface of the protease-inhibitor complexes. (a) Schematic dia-
gram of Ca��H���O¼¼C interactions of 1acb. (b) Schematic diagram of
Ca��H���O¼¼C interactions of 1gl1. The dashed lines represent Ca��
H���O¼¼C interactions. Protease components are a-chymotrypsin and in-
hibitor components are eglin C in 1acb and PMP-C in 1gl1, which are
nonhomologous. At the residue level, the inhibitor’s residues interacting
with a-chymotrypsin are quite different from each other (Table VII), but
Ca��H���O¼¼C interactions remain unchanged. The images are created
by program Swiss-PdbViewer.53
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mon binding mechanism, rather than through the
sequence or structure conservation.

CONCLUSIONS

Most of the studies about protein–protein interfaces
have been carried out at the level of amino acid residues
or more coarse-grained level of descriptions. In this
study, we look at the interfaces at the molecular interac-
tion level. Comprehensive studies of such type of
approach have been carried out in a number of studies
on protein stability, while a few studies on protein inter-
faces with limited scope have been reported. In addition,
most of them were concentrated on the role of an indi-
vidual interaction type. Furthermore, few attempts have
been made to investigate the meaning of specific interac-
tion types in the context of protein functions.
This is the first systematic approach to analyze protein–

protein interfaces at the molecular interaction level in the
context of protein functions. Our study clearly shows that
proteins show specific binding interactions according to their
functional classes of protein–protein interfaces, and specific
interactions are conserved according to their functional cate-
gory through the common binding mechanism, rather than
through the sequence or structure conservation.
We take advantage of classification and feature subset

selection technique, which are prevalent in pattern rec-
ognition and machine learning field. Three functional
classes of transient protein–protein complexes can be dis-
tinguished by only four interaction types, which involve
Ca��H���O¼¼C interaction, ion–ion interaction, NH���NH,
and amine���cation interaction. Of these four interaction
types, Ca��H���O¼¼C are predominant in protease-inhibi-
tor interfaces, and cation–anion interactions appear more
frequently in signaling complexes. When we examine
the interfaces in more detail, these two types of interac-
tions are conserved, while there is a large variation of
interacting pair at the residue level. The NH���NH and
amine���cation interaction give a minor contribution to

the classification accuracy. When combined with the
above two interactions, they show only 3.8% higher ac-
curacy. In the case of amine���cation interaction, the dif-
ference of the frequency is rather small. However, when
it is combined with the other interactions, it shows dis-
criminating power, especially between signaling com-
plexes and antibody–antigens.

We also examine persistent interaction types such as p���p
interaction, amide–carbonyl and hydroxyl–carbonyl group
interactions. It is noticeable that nearly 82% of the interfa-
ces has at least more than one hydroxyl–carbonyl interac-
tions. In p���p interaction, herringbone shape is a major con-
figuration. This result is different from that of the protein
core, where parallel-displaced configurations are major.
There was a study about p���p stacking interaction for the
protein core,30 but no study on p���p stacking interaction in
protein–protein interfaces has been reported.

An important implication of our work is that the anal-
ysis of protein–protein interfaces at the molecular inter-
action level in the context of protein functions can give
us another point of view about protein–protein interac-
tions. Proteins may selectively recognize their partners
with specific binding interactions under the appropriate
local environments, and sustain their stability with the
help of persistent interactions. Furthermore, if the bind-
ing region of one component of transient protein–protein
interfaces remains unchanged irrespective of their part-
ners, not only interaction itself but also interaction topo-
logy can be conserved through common binding mecha-
nism, even though there is a large variation of interact-
ing pairs at the residue level. The findings of this study
may help to design artificial drug candidates, which can
block or activate biologically meaningful pathways. More-
over, our approach can be extended to investigate the
effects of local environments to the protein–protein inter-
actions. We anticipate that we can directly apply our
approach to the fine-tuning of protein–protein docking
problem, and to distinguish crystal contacts from biologi-
cal contacts in near future.

TABLE VIII. Amino Acid Residue Pairs Showing Conservation of Cation-Anion Interactions in RAN Family

1i2m:CD ASP(77)a ARG(95) ARG(106) ASP(107) ARG(110) LYS(134) ARG(140)
ARG(320) ASP(95) ASP(384) ARG(320) GLU(322) ASP(95) ASP(44)

GLU(109) ARG(325) GLU(56)
1ibr:AB ASP(77) ARG(106) ASP(107) ARG(110) ARG(140)

LYS(62) ASP(160) LYS(62) ASP(160) GLU(281)
LYS(68) ASP(288)

1wa5:AB ARG(95) LYS(134)
GLU(506) GLU(484)

1wa5:AC ASP(77) ARG(106) ASP(107) ARG(110) LYS(134)
LYS(62) GLU(107) LYS(62) GLU(107) GLU(370)
LYS(66) LYS(66)

aThe number in the parenthesis represents the sequence number. This table lists the interacting residue pairs maintaining the conservation
of cation-anion interactions in the interfaces composed of small GTPase RAN and its partner. 1ibr and 1i2m involve small GTPase protein
RAN, and RAN’s interacting partner is importin beta-subunit, nuclear transport receptor, in 1ibr and regulator of chromosome condensa-
tion(RCC1) in 1i2m. The global structures of the interfaces are quite different from each other, and binding region is partly overlapped with
each other. However, cation-anion interaction is conserved on the overlapping region, even though there are some changes in the residue
pairs. For example, ASP(77) interacts with LYS(62) in 1ibr, but ARG(320) in 1i2m. ASP(107) interacts with two LYS(62), LYS(68) in 1ibr, but
two ARG(320), ARG(325) in 1i2m. Though there are changes interaction residue pairs, they try to sustain cation-anion interactions.
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