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Abstract

We propose new support vector machines (SVMs) that incorporate the geometric distribution of an input data set by
associating each data point with a possibilistic membership, which measures the relative strength of the self class membership.
By using a possibilistic distance measure based on the possibilistic membership, we reformulate conventional SVMs in three
ways. The proposed methods are shown to have better classification performance than conventional SVMs in various tests.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords:Classification; Support vector machines; Possibilistic SVMs; Geometric distribution; Possibilistic distance

1. Introduction

Despite many benefits of support vector machines
(SVMs) [1,2], there is no mechanism for handling varia-
tions in the significance of data points, so that all the data
points are treated identically in conventional SVMs. In
many real-world problems, however, each data point in the
data set for classification problems may differ in the de-
gree of significance due to noise, inaccuracies, or abnormal
characteristics; for example, outliers can lead to the inac-
curacies in a prediction phase. Hence, if all data are treated
as equivalent without considering such differences when
finding optimal hyperplanes (OHPs) in SVMs, the OHPs
identified are likely to be suboptimal. To solve the afore-
mentioned problems in SVMs, we propose new SVMs to
take into account the variation of the geometric significance
in a data set by introducing a possibilistic membership for
each data point. The membership is the relative strength
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of the self class membership, through which the inherent
geometric distribution of the data set is reflected. By using
a possibilistic distance measure based on the membership,
we reformulate conventional SVMs.

2. Possibilistic SVMs (PSVMs)

2.1. Possibilistic membership and distance

We propose two methods to extract a possibilistic mem-
bership value for each data point from a given data set (Meth-
ods I and II). Method I extracts the relative strength of self
class membership compared with the non-self class mem-
bership. Let us calculate a possibilistic membership value
for xk ∈ ith class. By using a mean distance betweenxk and
xl ∈ ith class (mean distance from self-class), and an mean
distance betweenxk andxj ∈ j th class (mean distance from
non-self class), the possibilistic membership value forxk is
defined as

�k =
(

1 +
∑m

l=1 ‖xk − xl‖/m∑n
j=1 ‖xk − xj‖/n

)−1

, k = 1, . . . , m, (1)
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wheremandn are the number of data of theith and thej th
class, respectively. The possibilistic membership forxj ∈
j th class is calculated in a similar manner. In this method,
the closer the data point is to the self-class in comparison
to non-self-class, the higher membership the data point has.

In Method II, the possibilistic membership forxk is de-
fined using the Mahalanobis distance to reflect the geomet-
ric shape of the self-class:

�k = 1 − (xk − �i )
TC−1

i (xk − �i )

Dmax
, k = 1, . . . , m, (2)

where �i (=1/m
∑m

l=1 xl ) is the center of theith class,
Ci=

∑m
l=1(xl−�i )(xl−�i )

T is the covariance matrix of data

in theith class, andDmax=maxl (xl −�i )
TC−1

i
(xl −�i ). A

higher possibilistic membership value is assigned to a data
point with lower distance to the center.

To incorporate possibilistic membership values into the
search of an optimal hyperplane, we introduce apossibilistic
distance. Suppose that each data pointxk has a possibilistic
membership value 0��k �1. Then we define a possibilistic
distance,�k , betweenxk and a hyperplane(w, b) as

�k =
{ |w · xk + b|

(�k)
�‖w‖ if �k 	= 0,

∞ otherwise,
(3)

where� (∈ R) is a control coefficient. Note that�k decreases
with increasing�k . Hence, a data point with a larger value of
�k has a stronger influence on the search of the OHP. When
� = 0, �k equals the Euclidean distance so that proposed
methods behave like conventional SVMs. As� → ∞, �k ’s
for data with�k < 1 approach infinity, and those data points
are neglected in the search for the OHP as a result.

2.2. Formulation for possibilistic support vector machines

2.2.1. Formulation ofPSVMs for the linearly separable
case

For a linearly separable data setS, we find the OHP
by maximizing the minimum possibilistic distancefrom
a hyperplane. In this case, a margin can be written as
mink[1/(�k)

�]|w · xk + b|/‖w‖, where 1�k�N andN is
the total number of data points. Because scalar multiplica-
tion does not affect an identity, we can normalize the hyper-
plane(w, b) to satisfy mink[1/(�k)

�]|w · xk + b|= 1. Then,
the objective function to maximize the margin is defined as

min{O = 1
2w · w}, (4)

subject to[1/(�k)
�]yk(w·xk+b)−1�0. By using Lagrange

multipliers �k and KKT conditions[2], we obtain the dual

representation of Eq. (4):

max


D(�) =

N∑
k=1

�k − 1

2

N∑
k=1

N∑
l=1

1

(�k)
�

× 1

(�l )
� �k�lykylxk · xl


 , (5)

subject to
∑N

k=1[1/(�k)
�]�kyk = 0 (�k �0). When � = 0,

Eq. (5) is equivalent to the separable case in conventional
SVMs. The offsetbo of the OHP can be calculated by the
complementary KKT condition,̌�k([1/(�k)

�]yk(w · xk +
b)−1)=0, where�̌k is the solution of Eq. (5). The decision
function for an unseen data pointxu is

f (xu) = sgn


 N∑

k=1

1

(�k)
� �̌kykxk · xu + bo


 . (6)

2.2.2. Formulation ofPSVMs for the soft margin
If a data setS is linearly non-separable, we permit mis-

classification using a slack variable�k that is the distance
from the margin of self class. Using�k , the OHP for this
case is found by

min


O = 1

2
w · w + C

N∑
k=1

(�k)
v��k


 , (7)

subject to[1/(�k)
�]yk(w·xk+b)−1+�k �0 (�k �0), where

C (∈ R+) is a regulation parameter. Since�k is related to the
penalty for misclassification caused byxk , the term(�k)

v��k

can be the measure of the margin error with membership-
dependent weighting forxk , wherev is a constant. Note that
since�k for misclassified data point is amplified by 1/(�k)

�,
v (�1) is necessary to reduce the effect of misclassified
data on a hyperplane. In a similar manner to the linearly
separable case, we obtain the dual representation for this
case.

max


D(�) =

N∑
k=1

�k − 1

2

N∑
k=1

N∑
l=1

1

(�k)
�

× 1

(�l )
� �k�lykylxk · xl


 , (8)

subject to
∑N

k=1[1/(�k)
�]�kyk =0 (0��k �(�k)

v�C). The
decision function for an unseen data pointxu is also given
as Eq. (6).

2.2.3. Formulation ofPSVMs for kernelization
As seen in Eqs. (6) and (8), the dual form of the objective

function and the decision function of PSVMs are represented
entirely in terms of inner products of pairs of input vectors.



K.-Y. Lee et al. / Pattern Recognition 38 (2005) 1325–1327 1327

Thus, we can kernelize the PSVMs. The kernelized version
of the decision function in Eq. (6) for PSVMs is given as

f (xu) = sgn


 N∑

k=1

1

(�k)
� �̌kykK(xk, xu) + bo


 . (9)

3. Experimental results

To evaluate the performance of our methods, we ap-
plied conventional SVMs and PSVMs using two possibilis-
tic membership extraction methods (Methods I and II) to
Hungarian Heart Disease (13 attributes/2 classes/294 data),
Iris (4/3/150), and Wine Recognition (13/3/178)[3], and
Leukemia data (50/2/38)[4]. In these tests, we evaluated the
prediction accuracies of two-fold cross validations for each
data set.

The mean prediction accuracies of five runs for each data
set are given inTable 1. Note that PSVMs using Methods
I and II have better performance than conventional SVMs
for all data sets used. Moreover, PSVMs using Method
II showed slightly better accuracies than PSVMs using
Method I except for Wine data. Notably, for Leukemia data,

Table 1
Mean accuracies (%) of conventional SVMs and PSVMs

Data set Conventional PSVMs PSVMs
SVMs Method I Method II

Hungarian 72.83 75.70 (3.94%) 76.59 (5.16%)
Iris 96.33 98.37 (2.12%) 98.37 (2.12%)
Wine 93.15 95.28 (2.29%) 95.17 (2.17%)
Leukemia 65.79 94.21 (43.20%) 96.84 (47.20%)

The improvement of the proposed methods over conventional
SVMs is specified in the parentheses.

PSVMs showed remarkable improvement over conventional
SVMs. From this observation, we conjecture that PSVMs
have a potential for solving the overfitting problems in SVMs
when the number of data is small compared with the dimen-
sion of features like Leukemia.

4. Conclusions

We have proposed new SVMs that can reflect the ge-
ometric significance in input data. The proposed methods
using the two possibilistic membership extraction methods
outperformed the conventional SVMs in all test cases.
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