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Abstract

We propose a new support vector data description (SVDD) incorporating the local density of a training data set by introducing
a local density degree for each data point. By using a density-induced distance measure based on the degree, we reformulate
a conventional SVDD. Experiments with various real data sets show that the proposed method more accurately describes
training data sets than the conventional SVDD in all tested cases.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The purpose of data domain description is to give a com-
pact description of a set of data referred to as target data. It
is usually used for outlier detection or a conventional clas-
sification problem especially where one of the classes is
undersampled[1]. Recently, a support vector data descrip-
tion (SVDD) inspired by support vector machines[2] was
invented by Tax and Duin[3]. In a SVDD, the compact
description of target data is given as a hypersphere with
minimal volume containing most of the data objects in a
high-dimensional feature space using some kernel functions
[3]. Despite the usefulness of a SVDD[3], the conventional
SVDD (C-SVDD) does not take into account the density
distribution of a target data set, since, it only considers the
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small portion of data that lie around the most outer region
in a high-dimensional feature space. In many real world
problems, however, each target data point may differ in the
degree of significance due to its density: the target data in
a higher density region are more significant than those in a
lower density region in describing a target data set because
the data in a higher density region should be included in the
compact description than other data. Hence, if all data are
treated as equivalent in describing a target data set, without
considering such difference in density degree, the solutions
are likely to be less optimal.
To address the above problem in the C-SVDD and find a

more robust and more reliable description of a target data
set, we propose a new SVDD to reflect the different local
density of a target data set by introducing the notion of a
local density degree for each data point. By using a density-
induced distancemeasure based on the degree, we generalize
the C-SVDD. We refer to the proposed method as a density-
induced SVDD (D-SVDD).
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2. Density-induced support vector data description

2.1. Extraction of local density degree

In this paper, we propose a method to extract a local
density degree for each data point from a target data set
using a nearest neighborhood approach. Let us calculate a
local density degree�i for a target data pointxi . By using
d(xi , xKi ), the distance betweenxi andxKi (theKth nearest
neighborhood ofxi ), and the mean distance ofKth nearest
neighborhoods of all target data,MEANK, the local density
degree�i >0 for xi is defined by

�i = exp

{
� × MEANK

d(xi , xKi )

}
, i = 1, . . . , n, (1)

whereMEANK = (1/n)
∑n

i=1 d(xi , xKi ), n is the number of
data in a target class, and 0���1 is a weighting factor.
Note that this method reports higher local density degree�i

for the data in a higher density region: the data with lower
xK
i

have higher�i values. Moreover, a bigger� produces
higher local density degrees.
To incorporate the density degrees into search of the op-

timal description in a SVDD, we introduce a new geomet-
ric distance called a density-induced distance. Suppose each
target data point can be expressed as(xi , �i ). We define a
density-induced distance,�i , betweenxi and the center of
a hypersphere(a, R) as

�i ≡ {�i (xi − a) · (xi − a)}1/2, (2)

wherea andR are the center and the radius of the hyper-
sphere, respectively. Note that�i increases with increasing
�i . Hence, to enclose the data point with increased�i owing
to higher local density degree�i , the radius of a minimum-
sized hypersphere should be increased; the data point with
higher density degree has stronger influence on the search
of the minimum-sized hypersphere.

2.2. Mathematical formulation

We first find a hyperspherical model(a, R) which gives
a closed boundary around target data with no training error
with regard to the density-induced distance. By minimizing
R, we find the optimal hypersphere which includes all the
target data. Then, we can obtain the optimal hypersphere
(a∗, R∗) by minimizing the objective functionO:

O = R2 subject to�i (xi − a) · (xi − a)�R2,

i = 1, . . . , n. (3)

To allow the possibility of training error, and therefore to
make the model more robust, the density-induced distance
between each target dataxi and the centera does not have
to be strictly smaller thanR, but data points with distance
larger thanRshould be penalized. We handle this case using
a slack variable�i �0 which is the distance between the

boundary� andxi outside�. Using the slack variable for
each target data point, we change the objective function in
Eq. (3) into

O = R2 + C

n∑
i=1

�i subject to�i (xi − a) · (xi − a)

�R2 + �i , �i �0, i = 1, . . . , n, (4)

whereC >0 is a control parameter which gives the trade-
off between the volume of the description and the training
errors. Note that�i plays a similar role with the slack vari-
able in the C-SVDD[3], but it has a different meaning.�i

equals�2i − R2 for a training error data point, otherwise it
is 0. It implies that�i also contains the information of local
density.
Minimizing Eq. (4) is an optimization problem. Therefore

by introducing Lagrange multipliers, we can construct the
Lagrangian:

L(R,a, �, �, �)

= R2 + C

n∑
i=1

�i −
n∑

i=1

�i{R2 + �i

− �i (xi · xi − 2a · xi + a · a)} −
n∑

i=1

�i�i , (5)

where �i �0 and �i �0 are Lagrange multipliers, from
which we can derive the following conditions at the solution
point:

n∑
i=1

�i = 1, a= 1

T

n∑
i=1

�i�ixi ,

T =
n∑

i=1

�i�i , �i = C − �i . (6)

Combining the conditions with Eq. (5), we obtain the dual
representation of the optimization problem: maximizeD(�)

D(�) =
n∑

i=1

�i�ixi · xi − 1

T

n∑
i=1

n∑
j=1

�i�j�i�jxi · xj (7)

subject to
∑n

i=1 �i = 1, 0��i �C, T = ∑n
i=1 �i�i , i =

1, . . . , n. Note that the dual form for this case has only
the Lagrange multiplier�i ; other variables and Lagrange
multiplier �i have disappeared. Furthermore, when�i = 1,
this dual representation is equivalent to the formalism of
a C-SVDD [3]. Thus, this proposed method is a general
extension of the C-SVDD.
This dual representation is a linear constrained optimiza-

tion problem; hence we can derive the�̌k that satisfies the
Eq. (7). After solving Eq. (7), we can derive thea∗ and
the R∗ of the solution of the problem from Eqs. (6) and
(4), respectively. Unlike in the C-SVDD[1], a∗ is weighted
by the local density degree�i . The center of the optimal
hypersphere is shifted to a higher density region. Using a
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Table 1
The average error rates (%) of ten independent runs for IRIS and LEUKEMIA

Class no. k-NNDD C-SVDD D-SVDD

k = 1 k = 3 Poly-3 Poly-5 Gaussian Poly-3 Poly-5 Gaussian

IRIS
0 4.20 6.73 3.40 31.33 3.47 2.80 2.93 0.42
1 13.93 14.20 10.00 33.93 7.73 9.80 9.67 6.50
2 18.00 19.20 13.53 35.67 9.33 13.27 13.33 9.25

Total 12.04 13.38 8.98 33.64 6.84 8.62 8.64 5.39

LEUKEMIA
0 30.53 23.42 13.68 29.47 18.68 12.63 14.21 7.37
1 12.63 12.63 13.42 39.21 18.68 10.26 12.11 4.74

Total 21.58 18.03 13.55 34.34 18.68 11.45 13.16 6.05

indication functionI [3], the decision function for a test data
point xt can be represented as:

f (xt ) = I


xt · xt − 2

T

n∑
i=1

�i �̌ixt · xi

− 1

T 2

n∑
i=1

n∑
j=1

�i�j �̌i �̌jxi · xj �R∗2

 . (8)

As seen in Eqs. (7) and (8), the dual form of the objec-
tive function and the decision function of the D-SVDD are
represented entirely in terms of inner products of pairs of
target data points. Thus, we can kernelize the D-SVDD for
flexible description. The kernelized version of the decision
function for the D-SVDD is

f (xt ) = I


K(xt , xt ) − 2

T

n∑
i=1

�i �̌iK(xt , xi )

− 1

T 2

n∑
i=1

n∑
j=1

�i�j �̌i �̌jK(xi , xj )�R∗2

 , (9)

whereK(·, ·) is a kernel function[2].

3. Experiments and conclusion

To investigate the success of these attempts, we conducted
various tests in which three versions of the C-SVDD and
three versions of the proposed method were applied to IRIS
[4], and LEUKEMIA [5]. Two polynomial kernel functions
and a Gaussian kernel function were used for flexible de-
scription [2]. The model parameters were found by cross
validation to identify optimal solutions of the C-SVDD. The
same parameter set with the C-SVDD andK = 3 in Eq. (1)
were used for the proposed method. We conducted the same
experiments with two versions of ak-nearest-neighbor data
description method[1], k-NNDD.

The average error rates of prediction accuracies of ten in-
dependent runs for the data sets are given inTable 1. The
label of a target data class is indicated in the first column;
the data in other classes are the candidates of negative data
that should not be included in a target data description. For
the IRIS data set, the two versions of thek-NNDD method
showed 4.20 and 6.73% average error rates when the la-
bel of a target class is 0. For the same data sets, the C-
SVDD showed 3.40, 31.33 and 3.47% error rates for each
version. The proposed D-SVDD method, however, showed
2.80, 2.93 and 0.42% error rates. That is the D-SVDD im-
proved the C-SVDD in all versions used, and the D-SVDD
with a Gaussian kernel function had the best performance.
Moreover, when a degree-5 polynomial kernel function was
used, the performance of the D-SVDD was not severely
deteriorated, which is not the case with the C-SVDD be-
cause the results of the C-SVDD with a higher degree of
a polynomial kernel are dominantly determined by the data
with larger norms[3]. Similar results were obtained for the
LEUKEMIA data set. For the LEUKEMIA data set, the D-
SVDD method had 6.05% error rate whereas the error rates
with the C-SVDD and thek-NNDD method were respec-
tively 18.68 and 18.03% when a Gaussian kernel function
was used ork = 3 was used. From these results, we draw
a conclusion that the proposed method showed better pre-
diction accuracies than the C-SVDD for all the data sets
used regardless of the type of kernel functions. Moreover,
the best performance was obtained when the D-SVDD with
a Gaussian kernel function was used.
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