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Abstract

By using a kernel function, data that are not easily separable in the original space can be clustered into homogeneous
groups in the implicitly transformed high-dimensional feature space. Kernelk-means algorithms have recently been shown
to perform better than conventionalk-means algorithms in unsupervised classification. However, few reports have examined
the benefits of using a kernel function and the relative merits of the various kernel clustering algorithms with regard to the
data distribution. In this study, we reformulated four representative clustering algorithms based on a kernel function and
evaluated their performances for various data sets. The results indicate that each kernel clustering algorithm gives markedly
better performance than its conventional counterpart for almost all data sets. Of the kernel clustering algorithms studied in
the present work, the kernel average linkage algorithm gives the most accurate clustering results.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

A clustering has emerged as a popular technique for pat-
tern recognition, image processing, and data mining. The
kernel-based classification in the feature space not only pre-
serves the inherent structure of groups in the input space,
but also simplifies the associated structure of the data[1].
Since Girolami first developed the kernelk-means clustering
algorithm for unsupervised classification[2], several stud-
ies have demonstrated the superiority of kernel clustering
algorithms over other approaches to clustering[3,4].
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Users of kernel clustering methods are often left wonder-
ing to what extent kernel clustering algorithms are superior
to conventional algorithms with regard to the data distribu-
tion and which clustering algorithm is the most improved
by reformulation in the kernel-induced feature space. In this
paper, we evaluate the performance of kernel clustering al-
gorithms with a view to providing answers to these ques-
tions. To our knowledge, this is the first such comparison
of kernel clustering algorithms for general purpose cluster-
ing. We consider four well-known clustering algorithms: the
k-means, fuzzyc-means, average linkage, and mountain al-
gorithms. We compare the performances of these four algo-
rithms with those of the kernelk-means algorithm, the kernel
fuzzy c-means algorithm, and formulations of the average
linkage and mountain algorithms based on a kernel function.
These comparisons are made over a variety of data sets.
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2. Kernel clustering algorithms

Given an unlabeled data setX = {x1, . . . , xn} in the
d-dimensional spaceRd , let � : Rd → H be a non-
linear mapping function from this input space to a high-
dimensional feature spaceH. By applying the non-linear
mapping function�, the dot productxi ·xj in the input space
is mapped to�(xi) · �(xj ) in the feature space. The key
notion in kernel-based learning is that the mapping func-
tion � need not be explicitly specified. The dot product
�(xi) · �(xj ) in the high-dimensional feature space can be
calculated through the kernel functionK(xi, xj ) in the in-

put spaceRd .

2.1. Kernel k-means algorithm

Given an unlabeled data setX and a mapping� : Rd →
H , the k-means algorithm in the high-dimensional feature
space iteratively searches fork clusters by minimizing the
functionJ [2,3]:

J (X) =
k∑

i=1

n∑
j=1

‖�(xj ) − v�
i ‖2, (1)

where theith cluster centroidv�
i

=n−1
i
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j=1 zij�(xj ) and
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j=1 zij . Here zij indicates whether data pointxj

belongs to theith cluster; specifically,zij =1 if it belongs to
the ith cluster and 0 otherwise. The key notion in the kernel
k-means algorithm lies in the calculation of the distance in
the feature space. The distance between�(xj ) andv�
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in the

feature space is calculated through the kernel in the input
space:

‖�(xj ) − v�
i ‖2

= �(xj ) · �(xj ) − 2�(xj ) · 1

ni

n∑
k=1

zik�(xk)

+ 1

ni

n∑
k=1

zik�(xk) · 1

ni

n∑
l=1

zil�(xl)

= �(xj ) · �(xj ) − 2

ni

n∑
k=1

zik�(xk)�(xj )

+ 1

n2
i

n∑
k=1

n∑
l=1

zikzil�(xk)�(xl)

= K(xj , xj ) − 2

ni

n∑
k=1

zikK(xk, xj )

+ 1

n2
i

n∑
k=1

n∑
l=1

zikzilK(xk, xl). (2)

Therefore, the objective function can be rewritten as
Eq. (3), and the process of updating clusters are repeated
until there is no significant improvement inJ between

consecutive iterations.

J (X) =
k∑
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K(xj , xj ) − 2
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+ 1
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 . (3)

The kernelk-means algorithm lacks the step in which cluster
centroids are updated so as to reassign the data point to
the closest cluster because the reassignment can be made
without calculating the centroids due to the implicit mapping
via the kernel function in Eq. (2).

2.2. Kernel fuzzy c-means algorithm

The kernel fuzzyc-means algorithm in the feature space
by a mapping� minimizes the functionJm [4]:

Jm(X) =
c∑

i=1

n∑
j=1

(�ij )
m‖�(xj ) − v�

i ‖2, (4)

where�ij is themembership degree of data pointxj to theith
fuzzy cluster, andm is a fuzziness coefficient. Theith cluster
centroid isv�

i
= ∑n

j=1(�ij )
m�(xj )/

∑n
j=1(�ij )

m. The k-
means algorithm repeatedly updates thek clusters at each
successive iteration, whereas the fuzzyc-means algorithm
iteratively updates the new membership degree�ij at each
iteration. The update of�ij in the feature space is defined
through the kernel in the input space as follows:
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Similar to the kernelk-means algorithm, the kernel fuzzy
c-means algorithm does not need to calculate the cluster
centroids because the centroid information is considered in
updating the membership degree�ij .
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2.3. Kernel average linkage algorithm

Compared to k-means-type algorithms, the average
linkage algorithm is more flexible with regard to the cluster
shape but has much greater time and space complexi-
ties. Based on the average distance between two clusters
Fn = {x1, . . . , xn} and Fm = {y1, . . . , ym}, the algorithm
iteratively merges two closest clusters until a single clus-
ter is obtained. The kernelization of the average linkage
algorithm is simpler and more intuitive than those of the
k-means-type algorithms. Given a mapping�, the dis-
tance between two clustersF�

n = {�(x1), . . . , �(xn)} and
F�

m ={�(y1), . . . , �(ym)} in the feature space is calculated
as

�Avg(F�
n , F�

m ) = 1

nm

n∑
i=1

m∑
j=1

‖�(xi) − �(yj )‖2, (7)

where

‖�(xi) − �(xj )‖2 = �(xi) · �(xi) − 2�(xi)�(xj )

+ �(xj )�(xj )

= K(xi, xi) − 2K(xi, xj )

+ K(xj , xj ). (8)

The iterative merging procedure in the feature space con-
tinues until all data points have been merged into a single
cluster or the number of merged groups reaches at prespec-
ified number of clustersk.

2.4. Kernel mountain algorithm

The mountain algorithm estimates the cluster centroids
by constructing and destroying the mountain function on a
grid space. The mountain function indicates the potential
that each grid point has to be a cluster centroid. To reduce
the computational complexities of the original algorithm, we
employed the subtractive mountain algorithm in which the
mountain function is calculated on data points rather than
grid points.
Given a mapping�, the mountain function at a data point

�(xi) in the feature space is defined as

M(�(xi)) =
n∑

j=1

e−�‖�(xi )−�(xj )‖2, (9)

where ‖�(xi) − �(xj )‖2 = K(xi, xi) − 2K(xi, xj ) +
K(xj , xj ). A higher value ofM(�(xi)) indicates that�(xi)

has more data points�(xj ) near to it in the feature space.
After calculating the mountain values, the data point whose
mountain value isM∗

1 = Maxi [M(�(xi))] is selected as
the first cluster centroid. Subsequent centroids are found

using the following modified mountain function:

M̂j (�(xi))

= M̂j−1(�(xi)) − M∗
j−1

n∑
j=1

e−�‖�(xi )−�(x∗
j−1)‖2 (10)

= M̂j−1(�(xi)) − M∗
j−1

×
n∑

j=1

e−�(K(xi ,xi )−2K(xi ,x
∗
j−1)+K(x∗

j−1,x
∗
j−1)), (11)

whereM̂j is the new mountain function,̂Mj−1 is the old
mountain function,M∗

j−1 is the maximum value of̂Mj−1,

andx∗
j−1 is the newly found centroid.

3. Experimental results

To test the various kernel clustering algorithms, we ap-
plied the four conventional clustering algorithms as well
as their kernel versions to 10 widely used data sets and
compared the performances of the algorithms. The data
sets employed were the BENSAID (49 data/3 clusters)[5],
DUNN (90 data/2 clusters)[5], IRIS (150 data/3 clusters)
[5], ECOLI (336 data/7 clusters), CIRCLE, BLE-3, BLE-
2, UE-4, UE-3, and ULE-4 data sets. This selection of data
sets includes various types of clusters, such as hyperspheri-
cal and hyperellipsoidal, and balanced and unbalanced types
(Fig. 1). The parameters used in thek-means and fuzzyc-
means algorithms were a termination criterion of� = 0.001
and a weighting exponent ofm = 2.0 [5]. The initial cen-
troids were uniformly distributed across the data set[5]. The
parameters used for the mountain algorithm were� = 5.4
and� = 1.5. The RBF kernel function was used in all four
kernel clustering algorithms due to its superiority over other
kernel functions[2].
The clustering accuracy achieved by each clustering al-

gorithm for each of the 10 data sets is listed inTable 1.
On the whole, the conventionalk-means and fuzzyc-means
algorithms showed similar performances for each data set,
with average accuracies of 73.60%and 74.39%, respectively.
In comparison to these two algorithms, the average link-
age algorithm showed better clustering performance (aver-
age 83.33%); in particular, it achieved 100.0% accuracy for
four of the ten data sets. In agreement with previous works,
the present results, particularly those for the unbalanced and
ellipsoidal data sets (e.g., BENSAID or BLE-2), show that
the average linkage algorithm can handle a greater range
of cluster shapes than thek-mean-type algorithms. How-
ever, it showed substantially different behavior when applied
to similar data sets; for example it achieved accuracies of
56.0% and 100.0% for the BLE-3 and BLE-2, respectively,
and accuracies of 71.45% and 100.0% for the UE-4 and UE-
3 data sets. Such discrepancies arise because the average
linkage algorithm is sensitive to the order in which data are
presented. Compared to the other algorithms, the mountain
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Fig. 1. Two- and three-dimensional data sets used in our evaluation: (a) CIRCLE, (b) BLE-3, (c) BLE-2, (d) UE-4, (e) UE-3, (f) ULE-4.

Table 1
Clustering accuracy (%) achieved by each clustering algorithm for 10 data sets

Data set Conventional Kernel

k-means FCM Average Mountain k-means FCM Average Mountain

BENSAID 79.59 73.47 100.0 85.71 83.67 93.88 100.0 100.0
DUNN 70.00 70.00 100.0 83.33 71.11 95.56 100.0 100.0
IRIS 89.33 89.33 90.67 52.67 96.00 93.33 89.33 93.33
ECOLI 42.86 49.11 76.49 51.19 68.75 61.01 77.38 69.05
CIRCLE 50.76 52.79 62.44 55.84 100.0 93.40 82.74 62.94
BLE-3 65.67 65.67 56.00 70.33 76.33 74.67 100.0 71.67
BLE-2 88.50 87.75 100.0 85.25 100.0 94.00 100.0 100.0
UE-4 77.25 66.00 71.45 73.50 100.0 98.50 100.0 84.75
UE-3 95.83 95.00 100.0 51.17 98.83 96.67 100.0 95.67
ULE-4 76.25 94.75 76.25 96.25 98.00 96.25 100.0 96.25

Avg. (%) 73.60 74.39 83.33 70.52 89.27 89.73 94.95 87.37

algorithm exhibited more unstable performance. The aver-
age accuracy of the conventional mountain algorithm was
70.52%.
The clustering results obtained using the kernel clustering

algorithms are listed on the right side ofTable 1. It is evident
that the kernel clustering algorithms give markedly better
performance than the conventional algorithms. On average,
the kernelk-means and kernel fuzzyc-means algorithms
were about 15%more accurate than their conventional coun-

terparts, and the kernel average linkage and kernel moun-
tain algorithms were approximately 12% and 17% more ac-
curate than the conventional algorithms, respectively. The
clustering performance of the kernelk-means and kernel
fuzzy c-means algorithm provided significantly better clus-
tering performance for data sets that have previously been
shown low performance, such as CIRCLE, BLE-2, UE-4,
and ULE-4[5]. In addition, for the CIRCLE and IRIS data
sets, which contain ring-shaped clusters and overlapping
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clusters, respectively, these algorithms gave better clustering
results than the kernel average linkage algorithm. The ker-
nel average linkage algorithm successfully classified seven
of the 10 data sets, giving accuracies of 100.0%. Of partic-
ular note are the results for the BLE-3, UE-4, and ULE-4
data sets, for which the conventional average linkage al-
gorithm gave accuracies of 50–70% but the kernel version
classified with 100% accuracy. In terms of the total accu-
racy, the kernel average linkage algorithm was the most ac-
curate clustering algorithm (94.95%). The kernel mountain
algorithm gave the greatest enhancement of clustering per-
formance for the mountain algorithm (17% improvement),
with accuracies of more than 90% for six data sets. No-
tably, the ranking of the conventional clustering algorithms
in terms of overall accuracy was preserved in their ker-
nel versions: the kernel average linkage algorithm was the
most accurate and the kernel mountain algorithm the least
accurate.

4. Conclusions

Compared to the corresponding conventional clustering
algorithms, the kernel clustering algorithms showed bet-
ter clustering results for almost all data sets. The kernel
k-means algorithm was significantly more accurate than its
conventional counterpart, particularly when applied to data
sets that have been shown low performance to date. The
kernel fuzzyc-means algorithm achieved>90% accuracy
for eight of the 10 data sets. Overall, the kernel average
linkage algorithm gave the most accurate clustering results.
The kernelization of the mountain algorithm improved the

clustering accuracy to a degree similar to that achieved for
the other algorithms. The kernel average linkage algorithm
is the most appropriate to use when no prior knowledge on
the characteristics of the data set is available.
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