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ABSTRACT
Motivation: Clustering has been used as a popular technique for
finding groups of genes that show similar expression patterns under
multiple experimental conditions. Many clustering methods have been
proposed for clustering gene-expression data, including the hierarch-
ical clustering, k -means clustering and self-organizing map (SOM).
However, the conventional methods are limited to identify different
shapes of clusters because they use a fixed distance norm when calcu-
lating the distance between genes. The fixed distance norm imposes
a fixed geometrical shape on the clusters regardless of the actual data
distribution. Thus, different distance norms are required for handling
the different shapes of clusters.
Results: We present the Gustafson–Kessel (GK) clustering method
for microarray gene-expression data. To detect clusters of different
shapes in a dataset, we use an adaptive distance norm that is cal-
culated by a fuzzy covariance matrix (F ) of each cluster in which the
eigenstructure of F is used as an indicator of the shape of the cluster.
Moreover, the GK method is less prone to falling into local minima than
the k -means and SOM because it makes decisions through the use
of membership degrees of a gene to clusters. The algorithmic proced-
ure is accomplished by the alternating optimization technique, which
iteratively improves a sequence of sets of clusters until no further
improvement is possible. To test the performance of the GK method,
we applied the GK method and well-known conventional methods to
three recently published yeast datasets, and compared the perform-
ance of each method using the Saccharomyces Genome Database
annotations. The clustering results of the GK method are more signi-
ficantly relevant to the biological annotations than those of the other
methods, demonstrating its effectiveness and potential for clustering
gene-expression data.
Availability: The software was developed using Java language, and
can be executed on the platforms that JVM (Java Virtual Machine) is
running. It is available from the authors upon request.
Contact: dhlee@bisl.kaist.ac.kr
Supplementary information: Supplementary data are available at
http://dragon.kaist.ac.kr/gk

1 INTRODUCTION
The DNA microarray technology has enabled biologists to monitor
the expression levels of thousand of genes in parallel under multiple

∗To whom correspondence should be addressed.

experimental conditions. Since the diauxic shift (DeRisi et al., 1997),
sporulation (Chu et al., 1998) and the cell cycle (Cho et al., 1998)
in the yeast Saccharomyces cerevisiae were explored, many exper-
iments have been made to monitor the gene-expression levels of
various organisms during some biological process.

The present study focuses on the application of clustering meth-
ods for analyzing gene-expression datasets that are comprised of the
expression patterns of specific environmental conditions, rather than
time-course type of data. Since Eisen et al. (1998) first used the
hierarchical clustering method to find groups of coexpressed genes,
numerous methods have been studied for clustering gene-expression
data: self-organizing map (SOM) (Tamayo et al., 1999), k-means
clustering (Tavazoie et al., 1999), simulated annealing (Lukashin
and Fuchs, 2001), graph-theoretic approach (Xu et al., 2001),
mutual information approach (Steuer et al., 2002), fuzzy c-means
clustering (Dembele and Kastner, 2003), kernel hierarchical cluster-
ing (Qin et al., 2003), diametrical clustering (Dhilon et al., 2003),
quantum clustering (QC) with singular value decomposition (Horn
and Axel, 2003), bagged clustering (Dudoit and Fridlyand, 2003)
and CLICK (Sharan et al., 2003).

Of the clustering methods reported to date, the most widely
used methods are the hierarchical, k-means and SOM due to their
superiority and availability of several free software tools. However,
these conventional clustering methods have a number of limitations.
As Yeung et al. (2001), and Gibbons and Roth (2002) pointed out,
the performance of the hierarchical clustering method was close to
random, despite its wide-usage, and worse than the k-means and
SOM. Such cases arise because the hierarchical clustering is likely
to produce one single large cluster and several singletons. Further-
more, this method suffers from the defect that it can never repair
what was done in previous steps.

The partitional clustering methods such as the k-means and SOM
are also problematic when the clusters differ in shape (Babuska,
1998; Bezdek et al., 1999; Jain et al., 1999). The shape of clusters is
determined by a distance norm, which is a fundamental factor when
developing a clustering method. Let xj be the expression vector for
the j -th gene over different environmental conditions (or samples),
and let vi be the i-th cluster centroid (prototype). Then a typical
distance norm between xj and vi is represented as:

D2
ij = ‖xj − vi‖2

A = (xj − vi)
TA(xj − vi) (1)

where A is a symmetric and positive definite matrix. Thus different
norms can be induced by the choice of the matrix A. The Euclidean
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norm is induced when A = I where I is an identity matrix. The
Mahalonobis norm is induced when A = M−1 where M−1 is the
inverse of the covariance matrix of patterns in the system.

Although many clustering methods have been studied in the liter-
ature, a common limitation of conventional methods is to use a fixed
distance norm for finding clusters; this fixed norm imposes a fixed
geometrical structure and finds clusters of that shape even if they are
not present. The Euclidean norm-based methods find only spherical
shape of clusters, and the Mahalanobis norm-based methods find
only ellipsoidal ones even if those shapes of clusters are not present
in a dataset. For example, let us consider a dataset distributed in
four clusters, plotted in Figure 1a, which is composed of the expres-
sion vectors of 400 genes measured at two conditions. Although the
clusters differ in shape, the conventional clustering method using the
Euclidean distance is limited to identify the four clusters because it
imposes a spherical shape on the clusters with no regard to the actual
data distribution, as depicted in Figure 1b. In such cases, it is of no
help to use another distance norm.

To tackle the addressed problems, different distance norms are
required for handling the different shapes of clusters; specifically,
different As should be applied to the different clusters. In the present
work, we present the Gustafson–Kessel (GK) method based on an
adaptive distance norm (Gustafson and Kessel, 1979; Babuska, 1998;
Bezdek et al., 1999) for clustering gene-expression data. Different
norm-inducing matrix As are adapted by estimating the data covari-
ance, and used to guess the associated structure of the data in each
individual cluster. Recently, Guthke et al. (2002) showed that the
GK method gave higher accuracy than other methods in predicting
the gene function of Escherichia coli. However, the work of Guthke
et al. was not very extensive and the experimental comparisons were
made using a very small subset of data (265 genes). In the present
study we provide a comprehensive analysis on the GK method, and
show the superiority of the GK method to other methods through
extensive experiments with various datasets. The remainder of this
paper is organized as follows: Section 2 describes the formulation of
the GK method; Section 3 highlights the potential of the GK method
through several tests on the yeast datasets; and Section 4 presents
our concluding remarks.

2 THE GUSTAFSON–KESSEL METHOD
The GK method generates a fuzzy partition that provides a degree of
membership of each data point to a given cluster. The objective of
the GK method is to classify a set of data points X = {x1, x2, . . . , xn}
in p-dimensional space into k disjoint and homogeneous clusters
represented as C = {C1, C2, . . . , Ck}. To detect clusters of different
geometrical shapes in a dataset, this method introduces an adaptive
distance norm for each cluster. Each cluster Ci has its own norm-
inducing matrix Ai , which affects the distance norm given as the
following.

D2
ijAi

= ‖xj − vi‖2
Ai

= (xj − vi)
TAi(xj − vi), (2)

where V = [v1, v2, . . . , vk] is a vector of the centroids of the fuzzy
clusters C1, C2, . . . , Ck . Use of the matrix Ai makes it possible for
each cluster to adapt the distance norm to the geometrical structure
of the data at each iteration. Based on the norm-inducing matrices,
the objective of the GK method is obtained by minimizing the

(a)

(b)

Fig. 1. Clustering of the conventional clustering method using the Euclidean
distance: (a) plot of the original dataset measured at two conditions in which
four clusters have different shapes; (b) conventional method detects clusters
of spherical shape regardless of the actual data distribution. The horizontal
axis represents the expression value at the first condition. The vertical axis
represents the expression value at the second condition.

function Jm.

Jm(U , V , A : X) =
k∑

i=1

n∑
j=1

(µij )
mD2

ijAi
, (3)

where
A = (A1, A2, . . . , Ak)

is a k-tuple of the norm-inducing matrices,

U = [
µij

] =




µ11 µ12 … µ1n

µ21 µ22 … µ2n

...
...

...
...

µk1 µk2 … µkn


 (4)
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is a fuzzy partition matrix of X satisfying the following constraints,

µij ∈ [0, 1], 1 ≤ i ≤ k, 1 ≤ j ≤ n,

k∑
i=1

µij = 1, 1 ≤ j ≤ n,

0 <

n∑
j=1

µij < n, 1 ≤ i ≤ k,

(5)

and

m ∈ [1, ∞) (6)

is a weighting exponent that controls the membership degree µij of
each data point xj to the cluster Ci . The choice of appropriate m value
is of importance because the final clusters may vary depending on
the m value selected. As m → 1, J1 produces a hard partition where
µij ∈ {0, 1}. As m approaches infinity, J∞ produces a maximum
fuzzy partition where µij = 1/c.

To obtain a feasible solution by minimizing Equation (3), the
additional constraint is required for Ai .

det(Ai) = ρi , ρi > 0, 1 ≤ i ≤ k, (7)

where ρi is a cluster volume for each cluster. Equation (7) guarantees
that Ai is positive-definite, indicating that Ai can be varied to find the
optimal shape of cluster with its volume fixed. Using the Lagrange
multiplier method, minimization of Equation (3) with respect to Ai

produces the following equation.

Ai = [ρi det(Fi)]1/pF−1
i , (8)

where

Fi =
∑n

j=1(µij )
m(xj − vi)(xj − vi)

T∑n
j=1(µij )m

(9)

is the fuzzy covariance matrix of cluster Ci . The set of fuzzy covari-
ance matrices is represented as a k-tuple of F = (F1, F2, . . . , Fk). To
show Ai in Equation (8) satisfies the constraint of a symmetric and
positive-definite matrix, suppose that there are p linearly independ-
ent data points ξ ∈ Rp in the dataset. Then, the matrices ξξT are
symmetric and positive semi-definite and also their weighted sum
(Fi), and hence Ai is symmetric and positive-definite.

There is no general agreement on what value to use for ρi ; without
any prior knowledge, a rule of thumb that many investigators use
is ρi = 1 in practice (Bezdek et al., 1999). Moreover, based on
the notion that ρi represents the cluster volume for each cluster, in
the present study we estimated ρi , shown in the following equa-
tion, by exploiting the definition on the volume of fuzzy cluster
Ci (Dumitrescu et al., 2000), making the GK method to be fully
operational.

ρi = √
det(Fi) (10)

Under this formulation, the fixed norm D2
ij = ‖xj − vi‖2

A calcu-
lated for the distance between xj and vi is replaced in the GK method

1C

2C

3C

4C

Fig. 2. The GK method successfully identifies the four clusters by exploit-
ing the covariance matrices Fi for the clusters. Dots represent data points
and thick lines represent the hyperellipsoides given by the eigenstructures
of clusters. The horizontal axis represents the expression value at the first
condition. The vertical axis represents the expression value at the second
condition.

with the following distance,

D2
ijAi

= ‖xj − vi‖2
Ai

= (xj − vi)
T

[√
det(Fi) det(Fi)

]1/p

F−1
i (xj − vi)

= √
det(Fi) det(Fi)

1/p‖xj − vi‖2
F−1

i

. (11)

The eigenstructure of the covariance matrices Fi identifies the
shape of clusters. Let λ1, λ2, . . . , λp be the eigenvalues of Fi , and
they are arranged in decreasing order; then the length of the r-th axis
of each cluster is given by

√
λr for r = 1, . . . , p. Figure 2 shows

the eigenstructures of the clusters for the dataset from Figure 1a. The
thick lines represent the eigenvectors of Fi , which correctly detect the
shape of the clusters. The cluster centroids and eigenvalues obtained
by the GK method for the four clusters are listed in Table 1. The last
column is the ratio of the length of the first axis (

√
λ1) to the length

of the second axis (
√

λ2), which describes the overall distribution of
data. We can see that the ratio value of the cluster C1 is about 1.0,
indicating that C1 has a spherical shape. In contrast, the cluster C4

has a ratio value of 9.36, indicating that the shape of C4 would be an
elongated ellipsoid. The eigenvalue calculations, shown in Figure 2
and Table 1, indicate that the shape of each cluster is recognized by its
eigenstructure, and therefore the adaptive distance norm is capable
of identifying the inherent structure of the data.

The saddle point of Jm is obtained by considering the constraint
Equation (5) as the Lagrange multipliers:

∇Jm(U , V , A, λ : X)

=
k∑

i=1

n∑
j=1

(µij )
mD2

ijAi
+

n∑
j=1

αj

[
k∑

i=1

µij − 1

]
(12)
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Table 1. The cluster centroids (vi ) and eigenvalues (λi) obtained by the GK
method for the dataset from Figure 2

Cluster Centroid λ1 λ2
√

λ1/
√

λ2

C1 [−0.03, 3.05]T 0.14 0.12 1.06
C2 [0.12, 1.02]T 0.35 0.04 3.15
C3 [0.09, −0.02]T 0.82 0.01 9.11
C4 [2.50, −0.01]T 0.75 0.01 9.36

and by setting ∇Jm = 0. If D2
ijAi

> 0 for all i, j and m > 1, then
(U , V ) may minimize Jm only if,

µij =
[

k∑
l=1

(
DijAi

DilAi

)2/(m−1)
]−1

, 1 ≤ i ≤ k, 1 ≤ j ≤ n, (13)

and

vi =
∑n

j=1(µij )
mxj∑n

j=1(µij )m
, 1 ≤ i ≤ k. (14)

This solution also satisfies the remaining constraints of Equation (5).
The GK method iteratively improves a sequence of sets of clusters

until no further improvement in Jm(U , V , A : X) is possible. This
type of iteration is often referred to as the alternating optimization
(AO) scheme. It loops through the estimates for Vt−1 → Ut → Vt

(where t is the iteration step) and terminates on ‖Vt − Vt−1‖ ≤ ε.
Equivalently, the initialization of the algorithm can be done on U0,
and the iterates become Ut−1 → Vt → Ut , with the termination
criterion ‖Ut − Ut−1‖ ≤ ε. This way of alternating optimization
makes the GK method be less prone to falling into local minima than
the k-means and SOM methods because it makes soft decisions in
each iteration through the use of membership functions.

Algorithm 1. Gustafson–Kessel method
Given the dataset X = {x1, . . . , xn}, xj ∈ Rp , the number

of clusters (k), the weighting exponent (m), and the termination
criterion (ε), this method finds k disjoint and homogeneous clusters.

1. Initialize Ut−1 = [µ(t−1)
ij ] (initially, t ← 1) of xj belonging to

cluster Ci for 1 ≤ i ≤ k, 1 ≤ j ≤ n such that:

k∑
i=1

µij = 1.0.

2. Update the cluster centroids Vt = [v(t)
1 , . . . , v(t)

k ] for 1 ≤ i ≤ k

using:

v
(t)
i =

∑n
j=1(µ

(t−1)
ij )mxj∑n

j=1(µ
(t−1)
ij )m

.

3. Update the cluster covariance matrices Fi for 1 ≤ i ≤ k using:

Fi =
∑n

j=1(µ
(t−1)
ij )m(xj − v

(t)
i )(xj − v

(t)
i )T∑n

j=1(µ
(t−1)
ij )m

.

4. Compute the distances between xj and v
(t)
i for 1 ≤

i≤ k, 1 ≤ j ≤ n using:

D2
ijAi

= ρi det(Fi)
1/p‖xj − v

(t)
i ‖2

F−1
i

.

5. Update Ut = [µ(t)
ij ] by the following procedure. For

each xj , 1 ≤ j ≤ n,
(a) if DijAi

> 0, 1 ≤ i ≤ k, then update the membership of
xj at t by:

µ
(t)
ij =

[
k∑

l=1

(
DijAi

DilAi

)2/(m−1)
]−1

,

(b) if DijAi
= 0 for some i ∈ I ⊆ 1, . . . , k, then for all i ∈ I ,

set µ
(t)
ij to be between [0, 1] such that:

∑
i∈I

µ
(t)
ij = 1, and

set µ
(t)
ij = 0 for other i /∈ I .

6. If ‖Ut − Ut−1‖ ≤ ε, then stop; otherwise, t ← t + 1 and go to
Step 2.

Algorithm 1 shows the procedural steps of the GK method for
clustering the n × p gene-expression data where n is the number
of genes and p is the number of experiments. A singularity can
occur at Step 4 when the number of data is small or when the data
within a cluster are much linearly correlated (Babuska, 1998). In such
cases, the cluster covariance matrix becomes singular and cannot be
inverted; thus we cannot compute the distances at Step 4. To deal
with such cases, in the present study, the membership degrees are set
to µij = 0 for non-singular classes, and arbitrary values for singular
classes subject to the constraints of Equation (5).

Theorem 1. The GK method given in Algorithm 1 converges in a
finite number of iterations.

Proof 1. We first show that a saddle point of Jm appears at most
once by the GK method before it stops. Suppose that this is not true,
i.e. Ut1 = Ut2 for some t1, t2 where t1 �= t2. By the AO scheme, we
get Vt1+1 and Vt2+1 as optimal solutions for U = Ut1 and U = Ut2 ,
respectively. Therefore, we have

Jm(Ut1 , Vt1+1) = Jm(Ut2 , Vt1+1) (since Ut1 = Ut2 )

= Jm(Ut2 , Vt2+1) (15)

However, the sequenceJm(·, ·)generated by the GK method is strictly
decreasing (Selim and Ismail, 1984). Hence equation (15) is false
and Ut1 �= Ut2 . Since there are a finite number of saddle points of
Jm (Selim and Ismail, 1984), the algorithm will converge in a finite
number of iterations.

A similar proof concerning the convergence of the k-means-type
algorithms to a local minimum has been stated by Selim and Ismail
(1984).

3 RESULTS

3.1 Datasets and implementation parameters
To test the effectiveness with which the GK method clusters gene-
expression data, we applied the GK method and five well-known
clustering methods to three recently published yeast datasets and
compared the performance of each method. In the present study, we
used EXPANDER (Sharan et al., 2003) software that implements
many clustering methods, of which we investigated the results of
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Fig. 3. Comparison of the clustering performance of the k-means, SOM,
BagClust and GK methods for the yeast PHO-regulation dataset of Ogawa
et al. (2000). The horizontal axis represents the number of clusters given, the
vertical axis represents the z-score. The z-score is computed with the relation
between a clustering result and the SGD functional annotation of the genes
in the cluster (Gibbons and Roth, 2002).

the k-means, SOM, and CLICK methods. Along with these, we
examined the results of the bagged clustering (BagClust) (Dudoit
and Fridlyand, 2003) and the QC (Horn and Axel, 2003).

The datasets employed were the yeast PHO-regulation dataset of
Ogawa et al. (2000), the yeast ATP-regulation dataset of Mizugu-
chi et al. (2004), and the yeast Calcineurin-regulation dataset of
Yoshimoto et al. (2002). The Ogawa’s PHO dataset contains the
expression profiles of 6013 yeast genes measured at eight PHO-
regulated experiments. The Mizuguchi’s ATP dataset consists of
the expression levels of the 6215 yeast genes measured at three
different ATPase experiments. The Yoshimoto’s Calcineurin data-
set contains the expression profiles of 6102 yeast genes at 24
experiments by the presence and absence of Ca2+, Na+, CRZ1
and FK506. These three datasets were obtained from a pub-
lic website containing various published large-scale yeast datasets
(http://sgdlite.princeton.edu/download/yeast_datasets/).

In these experiments, the parameters used in the GK method were
ε = 0.001, m = 2.5, and ρ = 1; these values were chosen because
they have been overwhelmingly favored in many studies (Bezdek
et al., 1999). In the tests reported here, we analyzed the performance
of each method under changes in the number of clusters of k, with
varied from k = 2 to k = 10.

3.2 Performance comparison
In the present study, the clustering results were assessed using two
validation measures: z-score and Jaccard score.

First, the z-score (Gibbons and Roth, 2002) is calculated by invest-
igating the relation between a clustering result and the functional
annotation of the genes in the cluster. To achieve this, the score uses
the Saccharomyces Genome Database (SGD) annotation of the yeast
genes, along with the gene ontology developed by the Gene Onto-
logy Consortium (Ashburner et al., 2000; Issel-Tarver et al., 2002). A
higher score of z indicates that genes are better clustered by function,
indicating a more biologically significant clustering result.

Figure 3 shows the clustering results of the k-means, SOM,
BagClust and GK methods for the yeast PHO dataset. The z-scores

Fig. 4. Comparison of the clustering performance of the k-means, SOM,
BagClust, and GK methods for the yeast ATP-regulation dataset of Mizuguchi
et al. (2004). The horizontal axis represents the number of clusters given, the
vertical axis represents the z-score. The z-score is computed with the relation
between a clustering result and the SGD functional annotation of the genes
in the cluster (Gibbons and Roth, 2002).

of the four clustering methods are plotted with respect to k =
2, 3, . . . , 10. The k-means method gave z-scores of ranging from
−0.9 to 3.1, and SOM gave scores from −0.8 to 2.5. The z-scores
of the BagClust were ranged from −0.6 to 1.1. The SOM method
outperformed the k-means and BagClust methods at low k-values,
and the k-means method showed better performance than the SOM
and BagClust methods at high k-values. Compared to these three
methods, the GK method provided superior clustering performance
over a wide range of k-values; the z-scores were varied from 16.8
to 25.3.

Figure 4 shows the clustering results of the k-means, SOM,
BagClust and GK methods for the yeast ATP dataset. The k-means
method gave z-scores of ranging from 1.0 to 3.9. On the whole,
the SOM and BagCluster showed similar tendency for all k values.
In comparison to these methods, it is evident that the GK cluster-
ing method shows markedly better performance, giving z-scores of
>15.0 for k > 3. This result is in agreement with the work of Mizugu-
chi et al. (2004), which reported that the optimal k-value lies ∼3 for
this dataset.

The clustering results achieved by the six clustering methods for
each of the yeast PHO and ATP datasets are listed in Table 2. For the
PHO dataset, the k-means method showed the best z-score of 3.15
at k = 9. The SOM and BagClust methods provided best z-values of
2.53 and 1.14 at k = 7, respectively. The CLICK and QC methods
yielded z-values of 1.65 and 1.46 at k = 31 and k = 16, respectively;
these two methods automatically find the optimal k. In contrast, the
best value of z = 25.38 of the GK method was obtained at k = 10.
Furthermore, we tested the performance of the GK method for two
different values of ρ = 1 and ρ = √

det F . It is observed that the GK
method for these two ρ values showed similarly better performance
than other methods; the z-scores were varied from 5.77 to 29.80 over
k = 2, 3, . . . , 10. The best scores of the GK method were z = 25.38
for ρ = 1, and z = 29.80 for ρ = √

det F . For the ATP dataset,
the best z-values of the k-means and SOM methods were 3.97 and
1.84 at k = 5 and k = 3, respectively. The BagClust and CLICK
provided the best z = 0.87 and z = −1.03 at k = 10, respectively,
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Table 2. Summary of clustering results obtained by six clustering methods
for the yeast PHO-regulation dataset and the ATP-regulation dataset

Dataset Genes/conditions Method z-score k

Yeast PHO 6013/8 k-means 3.15 9
SOM 2.53 7
BagClust 1.14 7
CLICK 1.65 31
QC 1.46 16
GK (ρ = 1) 25.38 10
GK (ρ = √

det F) 29.80 6
Yeast ATP 6215 / 3 k-means 3.97 5

SOM 1.84 3
BagClust 0.87 10
CLICK −1.03 10
QC 0.94 8
GK (ρ = 1) 20.26 3
GK (ρ = √

det F) 29.70 4

For each dataset, the highest z-score of each method from Figures 3 and 4 are specified.

whereas the QC method yielded the best z = 0.94 at k = 8. The
GK method with respect to ρ = 1,

√
det F provided significantly

better clustering performance than other methods, giving z-scores of
>20.0.

In addition to the assessment using the z-score, we quantified the
clustering result of each method using the Jaccard and Minkowski
scores. Let T be the ‘true’ solution and C the solution a clustering
algorithm generated. Let n11 be the number of pairs of data that are in
the same cluster in both T and C. Let n10 be the number of pairs that
are in the same cluster only in T , and n01 be the number of pairs that
are in the same cluster only in C. Then the Jaccard score is defined as

SJ (T , C) = n11

n11 + n10 + n01
. (16)

A higher value of SJ (T , C) indicates a better clustering result; the
Minkowski score is defined as

SM(T , C) =
√

n01 + n10

n11 + n10
. (17)

In this case, a lower value of SM(T , C) indicates a well-clustered
result. To measure the quality of clustering with these two scores, we
applied five clustering methods to the yeast Calcineurin dataset that
provides a putative true solution obtained through manual inspection
by Yoshimoto et al. (2002). Table 3 lists the comparison results of five
clustering methods for k = 3. The GK method is the most effective
of the methods considered; it provides the highest Jaccard score,
with the lowest Minkowski score. The k-means and BagCluster
methods showed better scores than the SOM and QC methods,
and the QC method proved the most ineffective of the methods
considered.

The results of the comparison calculations indicate that the GK
method gave markedly better clustering performance than the other
five methods considered, highlighting the effectiveness and potential
of the GK method.

3.3 Functional enrichment
The enriched functional categories for each cluster obtained by
the GK method on the yeast PHO and ATP datasets are listed in

Table 3. Comparison of the clustering performance of the k-means, SOM,
BagClust, QC and GK methods for the yeast Calcineurin-regulation dataset
of Yoshimoto et al. (2002)

Dataset Method Jaccard Minkowski

Yeast Calcineurin k-means 0.55 0.72
SOM 0.49 0.79
BagClust 0.56 0.74
QC 0.41 0.90
GK 0.59 0.66

The number of clusters is k = 3. The Jaccard and Minkowski scores are computed with
the putative solution of Yoshimoto et al. (2002).

Table 4. Enrichment of GO categories in each of the clusters obtained by the
GK method for the yeast PHO-regulation dataset of Ogawa et al. (2000)

Cluster GO category GO number P -value

C1 Alcohol metabolism GO:0006066 4.31E−16
Sterol metabolism GO:0016125 1.15E−10
Steroid metabolism GO:0008202 1.91E−11
Ergosterol metabolism GO:0008204 1.14E−09
Lipid biosynthesis GO:0008610 6.14E−09
Lipid metabolism GO:0006629 7.34E−08

C2 RNA processing GO:0006369 7.30E−44
RNA metabolism GO:0016070 8.01E−41
35S primary transcript processing GO:0006365 1.49E−16
Processing of 20S pre-rRNA GO:0030490 2.76E−14
RNA modification GO:0009451 1.43E−10
SnoRNA binding GO:0030515 4.13E−10

C9 Ribonucleoprotein complex GO:0030529 4.83E−35
Ribosome GO:0005840 4.20E−45
Cytosol GO:0005829 4.04E−43
Cytosolic ribosome GO:0005830 6.33E−43
Protein biosynthesis GO:0006412 7.07E−34
Cytosolic large ribosomal subunit GO:0005842 9.61E−28
Large ribosomal subunit GO:0015934 9.01E−27
Small ribosomal subunit GO:0015935 3.12E−19
Cytosolic small ribosomal subunit GO:0005843 7.52E−18

The number of clusters is ten. Only functional categories with P -values less than 5.0E−7
are reported.

Tables 4 and 5 respectively. The enrichment of each GO category
in each of the clusters was calculated by its P -value. To compute
the P -value, we employed the hypergeometric distribution used by
Tavazoie et al. (1999) and Dembele and Kastner (2003) in order
to obtain the probability of observing the number of genes from a
specific GO functional category within each cluster. More detailed
explanation on this P -value can be found in Tavazoie et al. (1999)
and Dembele and Kastner (2003). A low P -value indicates that the
genes belonging to the enriched functional categories are biologic-
ally significant in the corresponding clusters. In the present study,
only functional categories with P -value <5.0 × 10−7 are reported.

Of the ten clusters obtained for the yeast PHO dataset (Table 4),
the cluster C9 contains several enriched categories on ‘ribosome’.
The highly enriched category in cluster C9 is the ‘ribonucleoprotein
complex’ with P -value of 4.83×10−35. The GO category ‘ribosome’
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Table 5. Enrichment of GO categories in each of the clusters obtained by the
GK method for the yeast ATP-regulation dataset of Mizuguchi et al. (2004)

Cluster GO category GO number P -value

C1 Endoplasmic reticulum GO:0005783 1.58E−12
Amino acid metabolism GO:0006520 5.19E−09
Amine metabolism GO:0009308 9.33E−09
Amino acid and derivative metabolism GO:0006519 1.35E−08
Carboxylic acid metabolism GO:0019752 5.01E−08
Amine biosynthesis GO:0009309 1.02E−07

C2 Cytosolic ribosome GO:0005830 8.40E−45
Ribosome GO:0005840 2.23E−30
Cytosolic large ribosomal subunit GO:0005842 2.34E−29
Ribonucleoprotein complex GO:0030529 3.16E−29
Protein biosynthesis GO:0006412 5.97E−25
Large ribosomal subunit GO:0015934 1.66E−21
Eukaryotic 48S initiation complex GO:0016283 5.28E−17
Cytosolic small ribosomal subunit GO:0005843 5.28E−17
Eukaryotic 43S preinitiation complex GO:0016282 2.84E−16

C3 Oxidative phospholylation GO:0006119 5.70E−14
Energy derivation by oxidation of

organic compounds
GO:0015980 4.75E−09

Hydrogen-translocating F-type ATPase
complex

GO:0045255 4.89E−09

Proton-transporting ATP synthase
complex

GO:0005753 4.89E−09

Proton-transporting two-sector ATPase
complex

GO:0016469 4.89E−09

ATP metabolism GO:0046034 4.89E−09
ATP synthesis coupled proton transport GO:0015986 4.89E−09
Nucleoside phosphate metabolism GO:0006753 4.89E−09
Proton-transporting ATP synthase

complex
GO:0045259 4.89E−09

Carbohydrate metabolism GO:0005975 1.01E−08
Purine ribonucleoside triphosphate

biosynthesis
GO:0009206 1.39E−07

Purine nucleoside triphosphate
biosynthesis

GO:0009145 1.39E−07

The number of clusters is three. Only functional categories with P -values less than
5.0E−7 are reported.

is also highly enriched in this cluster with P -value of 4.20 × 10−45.
The cluster C2 contains an enriched category ‘RNA processing’ with
P -value of 7.30 × 10−44. In the case of the ATP dataset (Table 5),
the cluster C3 contains the yeast genes corresponding to the ATP-
involved GO biological process. The highly enriched categories in
cluster C3 are the ‘ATP metabolism’ with P -value of 4.89×10−9 and
the ‘purine ribonucleoside triphosphate biosynthesis’ with P -value
of 1.39 × 10−7. From the results of Tables 4 and 5, we see that
the cluster obtained by the GK method shows a high enrichment of
functional categories.

Besides, as mentioned earlier, the GK method produces a fuzzy
clustering result, which provides a convenient way of selecting genes
showing tight association to given clusters (Dembele and Kastner,
2003). Dembele and Kastner referred to this process as ‘restric-
ted’ selection. Similar to the work of Dembele and Kastner, we
removed the most loosely associated genes in each cluster using a
threshold-based selection; specifically, genes with the highest mem-
bership degree µij > 0.5 were selected. To see the effect of the

Table 6. Enrichment of GO categories in the raw cluster C9 from Table 4
and in the corresponding restricted cluster obtained by the GK method for
the yeast PHO-regulation dataset of Ogawa et al. (2000)

Cluster GO category Raw cluster Restricted
cluster

C9 Ribonucleoprotein complex 14.12 20.36
Ribosome 11.96 17.81
Cytosol 14.31 21.12
Cytosolic ribosome 8.73 13.74
Protein biosynthesis 15.20 21.37
Cytosolic large ribosomal subunit 5.10 8.40
Large ribosomal subunit 6.27 9.92
Small ribosomal subunit 4.71 6.87
Cytosolic small ribosomal subunit 3.63 5.34

For each GO category, the percentage (%) of genes in a cluster is specified.

restricted selection, we compared the percentage of genes in the raw
cluster and its corresponding restricted cluster for GO functional cat-
egories. Table 6 lists a comparison result for the cluster C9 shown
from Table 4. In comparison to the raw cluster, the percentage of
genes in the restricted cluster were remarkably increased in most
cases. For instance, the percentage for the ‘ribonucleoprotein com-
plex’ was increased from 14.12% in the raw cluster to 20.36% in the
restricted cluster; this indicates that the genes in this category were
retained more frequently than the average genes in the cluster. We see
from this example that selecting tightly associated genes using the
threshold of membership degree can increase the biological relevance
of the genes in the cluster.

4 CONCLUSIONS
It is well established that clustering is a useful technique for analysis
of large amounts of gene-expression data, and a variety of clustering
method have been used in biological research. However, conven-
tional clustering methods suffer from a tendency to impose a fixed
shape on the clusters even if the clusters in many real-life datasets
may differ in shape. To address this problem, we have presented the
GK clustering method using an adaptive distance norm. The adaptive
norm is described in terms of the covariance matrix for each cluster
in which the eigenstructure is exploited to identify the shape of the
cluster. The present assessment has shown that the GK method is the
superior and effective method for clustering gene-expression data.

Despite these benefits of the GK method, several issues require
further investigation. The computational costs of the GK method
are much higher than other clustering methods such as the k-means
method. In each iteration step, k · n matrices are computed and sub-
sequently inverted, and additionally, k determinants are computed.
Especially, the GK method becomes computationally inefficient
when applied to high dimensional data. Figure 5 shows the real run
time of the GK method to cluster the yeast PHO-regulation and the
ATP-regulation datasets. It is observed from the figure that the eight-
dimensional PHO dataset shows a rapid increase in the computational
time more than the three-dimensional ATP dataset as the number of
clusters is increasing. In such a case, it maybe useful to initialize the
cluster centroids of the GK method with the resulting centroids of
the k-means method so that the GK method can converge fast to the
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Fig. 5. The run time of the GK method for clustering the yeast PHO-
regulation dataset and the ATP-regulation dataset. The horizontal axis
represents the number of clusters given, the vertical axis represents the real
run time in seconds.

saddle points of Jm with the reduced number of iterations. Second,
the GK method is problematic when the number of data is small or
when the data within a cluster are much linearly correlated (Babuska,
1998). In such cases, the cluster covariance matrix becomes singular
and cannot be inverted; thus we cannot compute the distances at Step
4 in Algorithm 1. To tackle this singularity problem, it would be help-
ful to prevent the ratio of the maximum to the minimum eigenvalue
from being larger than some predefined threshold.
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