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Reverse engineering is defined as the process where the 

internal structure of a given system is inferred from ex-
ternal observations and relevant knowledge [1]. Typical 
reverse engineering processes also include understanding 
the structural and dynamic characteristics of a target sys-
tem, since the primary purpose of reverse engineering is 
to elicit “actionable” knowledge and experimental plans 
for the system. Conventionally, reverse engineering tech-
niques have been widely used to derive circuit layouts and 
underlying software structures by examining external be-
haviors of electronic products and software systems with 
the purpose of modifying or integrating them. Since the 
biology of systems is a discipline used to understand bio-
systems based on the system theory, reverse engineering 
can be regarded as a central part of the discipline [2]. 

Biosystem reverse engineering can be conducted along 
three steps. The first step is to identify the components of 
a given biosystem. For example, genes, transcription fac-
tors, enzymes, metabolites, ligands, and receptors are 
components of cell systems. Recent genome sequencing 
projects and bioinformatics technology have identified a 
huge number of molecular components [3]. The second 
step is to unravel the interaction structures among the 
components. Biological circuits such as genetic regula-
tory networks, metabolic pathways, and signal transduc-
tion pathways are typical types of interaction structures in 
cell systems. Hybrid biological circuits of heterogeneous 
types of pathways have recently drawn increasing atten-
tion, as single type pathways were insufficient in explain- 

 
G`çêêÉëéçåÇáåÖ=~ìíÜçê 
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ing the complex behaviors of the biosystems. The third 
step is to understand structural and dynamic characteris-
tics of the system so that we can elicit actionable knowl-
edge. Following that, subsequent actions such as pathway 
modification, consolidation of artificial functions and a 
“what-if” analysis can be conducted. For example, novel 
microbial strains can be engineered by modifying particu-
lar metabolic pathways to yield valuable metabolites more 
productively than the corresponding wild types [4,5]. 
Understanding of regulatory networks and signal trans-
duction pathways is essential to identify novel drug tar-
gets, as well as anticipate the complicated side effects of 
potential drugs [6]. 

Depending on the types of biological circuits and target 
organisms, reverse engineering may require different 
techniques. For example, inference of metabolic pathways 
can be achieved effectively by observing and analyzing 
relative concentration changes of key biomolecules, in-
cluding the application of deterministic optimization 
techniques. Meanwhile, the inference of signal transduc-
tion pathways requires more sophisticated experimental 
techniques to measure the tiny amount of signal mole-
cules and stochastic techniques to deal with probabilistic 
reactions. Yet, they also share a commonality in that they 
can be represented by networks where the nodes are 
biomolecules or higher level bio-entities, and the edges 
are relationships among them, though the biological in-
terpretations vary widely. In most cases, their mutual 
interactions undergo non-linear fashions primarily due to 
positive or negative, direct or indirect feedback. 

Obviously, any single technique cannot fulfill the re-
quirement of reverse engineering even for a single type of 
biological circuits since different techniques can shed 
light on different aspects. Furthermore, the reverse engi-
neering process itself consists of multiple complex sub-



O= _áçíÉÅÜåçäK=_áçéêçÅÉëë=båÖK=OMMRI=sçäK=NMI=kçK=R=

 

tasks. This is similar to business information systems 
where different business tasks are applied to common 
data sets, and many subtasks are integrated to meet fun-
damental business needs. One key state-of-the-art tech-
nology that deals with such complexity in business infor-
mation systems is the component-based development 
(CBD) [7]. Each subtask is mapped into a component. A 
component is a program unit with its own data structures, 
well-defined access methods and self-management capa-
bilities. The components are developed independently 
while conforming to standard interfaces, and integrated 
with a larger system in a hierarchical manner. Among 
several available component infrastructures such as 
CORBA, .NET, and EJB, the Web Services protocol is 
widely used for loosely federated software systems [8]. 

Since such a framework should provide effective and 
efficient channels for control and data migration (while 
allowing autonomous executions of participating func-
tions), we decided to adopt the Web Services protocol as 
a coordination infrastructure standard. It consists of 
XML-based protocols WSDL (Web Service Definition 
Language), SOAP (Simple Object Access Protocol), and 
UDDI (Universal Description, Discovery, and Integra-
tion) [8]. After introducing a variety of techniques appli-
cable to biosystem reverse engineering, this paper pre-
sents our component-based architecture consisting of 3 
layers and 11 components.  

 

qÉÅÜåáèìÉë=Ñçê=_áçëóëíÉã=oÉîÉêëÉ=båÖáåÉÉêáåÖ= =
 

This section examines existing techniques for biosys-
tem reverse engineering. First, structure inference tech-
niques are described, where networks of interactions 
among bio-entities such as genes, proteins, and metabo-
lites are inferred. Simulation analysis techniques are di-
vided into two distinct approaches - numeric and logical. 
Numeric simulation aims to obtain quantitative predic-
tions on the system behaviors. Logical simulation focuses 
on qualitative and coarse-grained analysis. In addition, 
several representative working software tools are intro-
duced. 
 

kÉíïçêâ=píêìÅíìêÉ=fåÑÉêÉåÅÉ=
One of the frontier techniques for network structure 

inference is the Correlation Matrix Construction (CMC) 
method developed by Arkin and Ross [9]. Given a set of 
time course vectors, this method infers a metabolic path-
way structure each representing temporal fluctuations of 
an abundant level of a specific metabolite. They adopted 
a time-lagged correlation measure to quantify the rela-
tionship between each pair of metabolites. This correla-
tion matrix is fed into a multidimensional scaling tech-
nique to draw a network of interactions among a handful 
of metabolites. Though this technique has succeeded in 
showing that computational techniques on observational 
data could uncover internal structures of certain types of 
biological circuits, it is constrained by its single-link re-
striction. Combinational effects of more than one metabo-
lite cannot be incorporated as the author have mentioned. 

When combinational effects are taken into account, the 

search space of network structures expands exponentially 
Roughly speaking, given n nodes, the number of network 
structures to probe becomes Ω(2n), whereas only n2 
comparisons are sufficient when we restrict only single 
links. There have been many efforts to restrict the search 
space by premising different assumptions to work around 
the computational intractability. The most commonly 
postulated assumption is the linearity where the system 
behavior can be regarded as a sum of individual effects. 
In [10], they have modeled the reverse engineering of a 
genetic regulatory system with a matrix inversion prob-
lem. Once the regulatory system behavior is formulated 
as a combination of linear matrix equations and a sig-
moid function, several matrix inversion techniques such 
as singular value decomposition (SVD) and the Moore-
Penrose’s pseudo inverse method are applied to deter-
mine the coefficients in the matrices. In [11], they 
adopted a differential equation model where the abun-
dance change rate of each gene is represented as a linear 
function of the abundance of the other genes. The au-
thors postulated that it is relatively easy to know whether 
the rates of change are positive or negative. In other 
words, increasing or decreasing though the specific rate 
values are unknown. Based on this assumption, they pro-
posed to apply linear programming techniques to fit the 
coefficients of the linear functions. In [12], they applied 
the pseudo-steady state assumption to metabolic flux 
analysis so that the rates of change of metabolites can be 
assumed to be nearly zero. Thus, the reaction model is 
reduced into a linear equation system, where Lee can 
apply linear programming-based optimization techniques 
to determine model parameters. 

Besides such algebraic approaches, several machine 
learning-based techniques have been proposed. One of 
the significant works is the REVEAL (REVerse Engineer-
ing ALgorithm) program for inferring genetic regulatory 
networks in the form of Boolean networks [13-15]. It 
maps the activity level of a gene into a binary state, on or 
off. The program utilizes the mutual information among 
gene activity levels to identify which combination of 
genes determines the next state. Once such combinations 
are identified, the genetic regulatory network can be 
drawn, where each node represents a gene, and Boolean 
connectives such as AND, OR, and NOT, associate with 
the nodes. Though its two assumptions, which state that 
each gene has binary states and that state transitions are 
synchronous, have been regarded as drawbacks by other 
researchers, it can be regarded as among the first explicit 
formalisms for automatic inference of genetic regulatory 
structures. 

Bayesian networks have been used to model probabilis-
tic characteristics of relations among events. Due to its 
proven benefits in solid statistical analysis and noise han-
dling capability, there have been extensive efforts to infer 
Bayesian networks from observations in the machine 
learning and statistics communities. In [16], this tech-
nique was utilized to infer genetic regulatory networks 
from microarray gene expression data. Unlikely to the 
conventional applications of Bayesian networks, the prob-
lem of regulatory network inference suffers from a higher 
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degree of dimensionality. In other words, there were too 
few observations to infer structures among too many 
genes. They proposed to adopt several techniques such as 
sparse candidates and model averaging to alleviate the 
dimensionality problem. Aside from this statistical heuris-
tics, the others have proposed incorporating additional 
biological knowledge such as protein-DNA bindings us-
ing chromatin immuno-precipitaion (ChIP) assays. This 
includes a promoter sequence consensus in order to filter 
biologically plausible links between genes [17,18]. When 
gene-specific perturbation experiments are available, 
more reliable inference of structures are possible [19,20]. 
MONET (MOdularized NETwork Learning) has adopted 
a divide-and-conquer approach to alleviate the dimen-
sionality problem [21]. First, it divides a whole gene set 
to overlapped modules considering two complementary 
sources of information: biological annotations and ex-
pression data. Second, it infers a Bayesian network for 
each module, and integrates the learned subnetworks to a 
global network. The postulated assumption is that a cellu-
lar system is composed of locally interacting biological 
modules; most of the genes are likely to be related to the 
genes in the same biological modules rather than the 
genes in different modules. It can draw a global picture of 
inter-module relationships as well as a detailed look of 6 
intra-module interactions. Lee demonstrated that MONET 
could lead to at least a two-fold improvement in accuracy 
on the inference compared to whole-set-based and ex-
pression-based clustering approaches. 

As in other domains, regression trees turned out to be 
a useful formalism for inferring network structures. In 
[22], they have clustered genes based on their expression 
similarities. A regression tree was built for each cluster 
where decision nodes are formed in terms of known tran-
scription factors. By modifying cluster compositions re-
peatedly, they continue to refine the regression trees to fit 
the entire expression profiles. Though it should be given a 
set of transcription factors in advance, and despite the 
inferred networks being bi-partitioned between transcrip-
tion factors and genes, it has succeeded in finding useful 
novel relationships. Some of them are even validated 
through actual wet-lab experiments. In [23], they have 
built regression trees to find combinational effects of 
transcription binding motifs, and distinguish more domi-
nant ones with respect to given expression profiles. 

Though a large range of techniques have been develop-
ing for network structure inference, there is still much 
room to improve upon. One of the most critical critiques 
from the potential users of these techniques is the false 
positive prediction of relationships. Effective incorpora-
tion of biological domain biases to the learning process is 
imperative along with efforts to improve computational 
sophistication. 
 

kìãÉêáÅ=páãìä~íáçå=
Once the network structures are given or inferred, the 

next step of reverse engineering is to analyze the struc-
tural characteristics and dynamic behavior of the system. 
Thus, we can understand the critical pathways, conduct a 
“what-if” analysis, and uncover natural principles under-

lying the biosystems. 
Nonlinear differential equations have been widely used 

to understand time-variant phenomena in many decades 
[24]. After composing a set of differential equations where 
the left-hand side represents the rates of change of par-
ticular measurements, and the right-hand side is a nonlin-
ear function of other relevant measurements, we can 
monitor the system state trajectories given specific initial 
conditions. Depending on the characteristics of equations, 
we can further analyze the important properties of the 
target system such as boundaries and plasticity. Recently, 
bifurcation analysis has drawn increasing attention since 
attractors and bifurcations can be mapped into pheno-
typical state transitions of the target biosystems whereas 
detailed value changes are hard to interpret in many cases. 
Due to the long-standing mathematical endeavor in deal-
ing with nonlinear differential equations, the system be-
haviors can be well understood as long as we secure pre-
cise equations and the necessary coefficient assignment. 
However, these two premises are hard to attain in reverse 
engineering biological circuits, where precise models of 
biological reactions are not available in many cases, and 
the proper assignment of relevant coefficients are much 
harder. To remedy this constraint, several approximation 
techniques have been proposed. Among them, qualitative 
transition graphs based on the piecewise linear model has 
drawn interests [25]. The assumption is that the change 
rate of a species can be represented as a linear function of 
the concentration of other species when the concentra-
tions of some genes fall within particular ranges. In other 
words, in the ranges, the system is assumed to show lin-
ear characteristics in terms of the concentration of spe-
cies. The technique partitions the entire system state 
space into disjointed domains, within each, the system 
behaves in a linear manner. It also extracts state transi-
tion diagrams between domains, and provides a method 
to simulate the system behavior in terms of state transi-
tions. 

While the differential equation formalism can effectively 
model deterministic system behaviors in terms of species 
concentrations, there are many cases where such deter-
minism and concentration-based handling are inappro-
priate. It is especially hard to deal with the concentration 
of species in cellular signal transduction where a few 
molecules can trigger different cellular responses. Fur-
thermore, it has stochastic characteristics since species 
interactions are probabilistic. To deal with such classes of 
biological phenomena, several stochastic techniques in-
cluding stochastic Petri nets have been proposed [26]. 
When a large part of the biosystem is under consideration, 
the network itself becomes too complicated to under-
stand even though individual regions are well understood. 
They have adopted the workflow concepts, originally de-
veloped to model complex business operations by the 
Workflow Management Coalition. They also propose to 
utilize hierarchical Petri nets to control abstraction levels 
of system specification [27]. 
 

içÖáÅJ_~ëÉÇ=páãìä~íáçå=
Since Kauffman has proposed to utilize the Boolean 
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network to model and simulate genetic regulatory net-
works [15], there have been many techniques developed 
based on the Boolean network and its variations. Unlikely 
to the numeric simulations, the system states are repre-
sented in terms of Boolean states, where each elementary 
state is either on or off. Furthermore, state transitions are 
synchronous and Boolean logic-driven. Though this style 
of simulation cannot identify precise changes in the 
concentrations of species or continuous state changes, it 
can probe coarse-grained system behaviors effectively 
without either detail kinetic equations or precise parameter 
values. In addition, the Boolean network-based analysis 
has been extended to study global characteristics of large 
scaled regulatory systems [28,29]. Analysis attractors, 
trajectories, and basins of attractors can show the 
implications of local properties for the global dynamics of 
the regulatory networks. Two major constraints of 
Boolean networks (binary states and synchronous state 
transitions) have been eased by the generalized logical 
network formalism [30]. It allows each state to have 
more than two states and asynchronous state transitions. 
Other researchers have applied probabilistic 
characteristics to the Boolean network so that it can 
model and simulate probabilistic state transitions [31]. 

If-then rules, which have been extensively used to 
model business knowledge, have also been applied for 
biosystem modeling and simulation [32,33]. For example, 
they can compose a set of rules such as ‘if the tempera-
ture and pH of an experimental condition fall between 0 
and 30 and 6 and 8, respectively, then the activity of an 
enzyme is below 0.3’. Both forward and backward rea-
soning can be applied to the rules. As in the conventional 
production systems, forward reasoning can enumerate 
possible consequences of given facts and rules, while 
backward reasoning can keep track of necessary pre-
conditions for given situations. This formalism has rela-
tive advantages in its capability to encompass a wider 
range of biological knowledge. Since biological entities, 
such as protein complexes and DNA-protein binding, have 
compound structures, and biological processes are re-
garded as hierarchical processes, a compound graph-
based formalism has been proposed [34]. Once a target 
biological system is represented in the form of a com-
pound graph, a logical inference system such as HiLog 
can be utilized to answer forward and backward queries. 
 

tçêâáåÖ=pçÑíï~êÉ=qççäë=
A lot of software tools have been developed and dis-

tributed for biosystem modeling and simulation. Several 
graph visualization tools including Osprey, PIMrider, 
Graphlet and daVinci can be adopted to visualize bio-
circuits. Some of them also provide connections to bio-
molecular interaction databases such as BIND and DIP as 
well as function databases such as TRANSFAC. Several 
dozen bio-circuit simulation programs such as GEPASI 
[35], E-Cell [36], Cellerator [37] MetaFluxNet [12], and 
Virtual Cell [38,39] have been drawing increasing atten-
tion from system biologists. Integrated platforms such as 
Systems Biology Workbench [40], Cytoscape [41], and 
Genomic Object Net [42] have also been developed, where 

 
 
 
 
 
 
 
Fig. 1. Transformation of augmented circuit templates. 
 
 
a variety tools can be integrated to achieve complex analy-
sis functions in unified environments. 
 

oÉîÉêëÉ=båÖáåÉÉêáåÖ=Ñçê=^Åíáçå~ÄäÉ=jçÇÉä=bñéäçê~íáçå=
 

This section presents our component-based system ar-
chitecture for biosystem reverse engineering. There are 
several design principles underlying the architecture. First, 
it should provide an environment where autonomous 
components are loosely coupled. Depending on the re-
verse engineering task in hand, the way of component 
assembly can vary widely. There can be several alterna-
tives for the same subtask. Thus, tightly coupled integra-
tion can place critical burdens against such flexible re-
quirements. Second, it could accommodate existing solu-
tions as well as newly developed components in minimal 
adaptation overhead. Third, it could provide a unified 
user interface metaphor even though participating com-
ponents have their own interface styles. 

 
^ìÖãÉåíÉÇ=`áêÅìáí=jçÇÉä=

We propose a central information structure that bridges 
gaps between disparate user interface styles, and provides 
heterogeneous components with the functional closure 
property. It is referred to as an augmented circuit tem-
plate, where relevant raw data and derived information 
such as activation levels of bio-entities and inter-entity 
regulation strengths (as well as structural constraints of 
biological circuits are represented in a unified frame-
work). Reverse engineering can be mapped using a proc-
ess of transformation, enrichment, annotation, and re-
finement of the augmented circuit templates as depicted 
in Fig. 1. 

A disconnected collection of biological entities such as 
genes and proteins constitutes an entity level template. 
Experimental measurements such as gene expressions 
and metabolic profiles can be augmented to this template. 
The application of a particular structure identification 
technique such as Bayesian network learning can trans-
form this model into the skeletal level. Depending on the 
characteristics of applied techniques, the connections in 
the skeletal level templates can be deterministic or sto-
chastic. Various structural or dynamics analysis tech-
niques upgrade the skeletal level templates to the action-
able level. The actionable level templates can be further 
refined by incorporating additional analysis results.  

 

lîÉê~ää=póëíÉã=^êÅÜáíÉÅíìêÉ= =
Fig. 2 shows the overall system architecture for biosys-

tem reverse engineering. The architecture consists of 11  
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Fig. 2. Three-layered component-based architecture. 
 
 
components, which are divided into three layers. The lay-
ered architecture reduces communication complexity by 
restricting interacting pairs of components. Most compo-
nents come in the form of toolboxes; in other words, a set 
of functional units sharing common interfaces. The un-
derlying communication infrastructure among compo-
nents is the Service Oriented Architecture (SOA) based 
on XML-based protocols WSDL (Web Service Definition 
Language) and SOAP (Simple Object Access Protocol) 
[8]. This infrastructure facilitates the loosely coupled 
integration of existing functional units, as well as allow-
ing isolated invocation of them. The following subsec-
tions describe the functions of each component layer by 
layer. 
 

rëÉê=fåíÉêÑ~ÅÉ=i~óÉê=
This layer is primarily responsible for interactive con-

versation with the users. It adopts the word processing 
metaphor where an augmented circuit template is mapped 
to a text document. Composing, editing, printing, format-
ting text documents can be mapped to constructing, 
modifying, analyzing structurally and dynamically, and 
visualizing augmented circuit templates, respectively. Since 
most potential users are familiar with common word proc-
essor (WP) systems, this metaphor could provide one of 
the easiest user interface styles. 
 

mêçàÉÅí=j~å~ÖÉê=
Depending on the characteristics of the analysis target 

in hand, various scenarios can be applicable. For example, 
if a user is going to reverse engineer genetic regulatory 
circuits for yeast cell differentiation, the first task might 
be to acquire gene expression profiles and pre-process 
them. 

The pre-processed profiles should be fed into a net-
work inference unit such as Bayesian network learning. 
Since the edges in the inferred network are likely to con-
tain significant amounts of false positives, information 
fusion units should be invoked to filter them. If the user’s 
objective is to unravel the static structure of the circuit, 
this could fulfill the requirement. Otherwise, the user 

would have to perform more sophisticated structural 
analysis or dynamic simulations. This whole scenario can 
be mapped into successive and parallel invocations of 
corresponding functional units in various toolboxes. Since 
the scenario itself is complex and has its own value of 
knowledge, a user interface layer component-Project Man-
ager-stores, manages, and reuses them using its hierar-
chical storage structure. 
 

`áêÅìáí=bÇáíçê=
This component is the main dialogue agent with the 

users. It utilizes Structural Visualizer to present biologi-
cal circuits in the graphical user interface environment. It 
also utilizes a Dynamic Monitor to monitor the circuit 
behavior vs time. The biological circuits can be obtained 
from the Reverse Engineering layer or imported from 
external sources. Though its internal data structures are 
derived from the augmented circuit templates mentioned 
in the previous section, it can parse and transform exter-
nal bio-pathway formats such as Systems Biology Markup 
Language (SBML) [43] and Matabolic Flux Analysis 
Markup Language (MFAML) [44]. The Circuit Editor 
also provides the users with various edit functions such as 
circuit modification, merger of partial circuits, and con-
solidation of different levels of circuits, as well as circuit 
browsing functions. 
 

píêìÅíìê~ä=sáëì~äáòÉê=
When a biological circuit contains several hundreds or 

thousands of bio-entities, it is not straightforward to visu-
alize it. Structural Visualizer provides various modalities 
of visualization including hierarchical decomposition, 
extraction of critical pathways and reverse traverse so 
that the users can comprehend the circuit and focus on 
essential parts.  

 
aóå~ãáÅë=jçåáíçê= =
Dynamics analysis of biological circuits producesrious 

types of results such as temporal trajectories of multiple 
variables, state transition diagrams and stability diagrams. 
Since large biological circuits have many variables, and 
there are interrelationships among variables, Dynamic 
Monitor provides user-comprehensible means of moni-
toring dynamics. 
 

oÉîÉêëÉ=båÖáåÉÉêáåÖ=i~óÉê=
This layer contains four components for reverse engi-

neering: network structure inference, information fusion, 
structural analysis, and dynamics analysis. 
 

kÉíïçêâ=píêìÅíìêÉ=fåÑÉêÉåÅÉ=qççäÄçñ= =
Depending on the problem at hand, various techniques 

can be applied to infer network structures of biological 
circuits. This toolbox provides representative techniques 
such as Bayesian-network learning, Boolean-network 
learning, Correlation Matrix Construction (CMC), and 
association-rule learning. Data Preparation Toolbox proc-
esses experiment data result in an augmented circuit tem-
plate in its entity level. This toolbox transforms the model 
to its skeletal level where associations among bio-entities 
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are elicited. Note that there are many actual cases where 
this skeletal level with an augmented circuit template 
cannot avoid significant amounts of false positive associa-
tions due to dimensionality problems. In other words, the 
available experiment data is likely to be too few to draw 
reliable network structures. For example, at most, a few 
hundred microarray gene expression profiles are applica-
ble to network inference for several thousands of genes.  

 
fåÑçêã~íáçå=cìëáçå=qççäÄçñ=
In order to identify the false positives mentioned above, 

and assign biological meanings to the associations in an 
augmented circuit template, it is indispensable to incor-
porate extra information from independent sources. The 
Information Fusion Toolbox implements two different 
techniques for this purpose. First, it incorporates prior 
biological knowledge. For example, if we know cellular 
localization, gene sequence motifs of transcriptional regu-
lation information in advance, it helps to identify invalid 
associations effectively. Second, the technique applies to 
multi-modality analysis where different aspects of the 
same circuit are separately elaborated, and then consoli-
dated. For example, a genetic regulatory network, a pro-
tein interaction map, and a metabolic pathway on the 
same part of cellular phenomena can be consolidated. 
The latter technique requires several information fusion 
techniques, including synchronization, scaling and confi-
dence coordination, as well as ontological mapping. 
 

píêìÅíìê~ä=^å~äóëáë=qççäÄçñ= =
Once the network structure of a biological circuit is un-

raveled, we can apply various structural analysis tech-
niques. Path and cycle analysis is able to provide critical 
paths, possible system state transitions, duplicate paths, 
and feedback loops. Global connectivity analysis can show 
the submodules of the circuit, each of which takes distin-
guishable functions, while loosely being associated with 
other submodules. Structural comparison of multiple net-
work structures can enlighten evolutionarily conserved 
parts as well as provide clues for their functions. All of 
these analysis results are incorporated into its correspond-
ing augmented circuit template for subsequent analysis. 

 
aóå~ãáÅë=^å~äóëáë=qççäÄçñ=
Typical techniques for dynamics analysis are quantita-

tive simulation, trajectory analysis, and perturbation sta-
bility analysis. Since it is hard to attain precise kinetic 
models and parameters, fuzzy theoretic approximate analy-
sis and qualitative analysis techniques have been investi-
gated to add to this toolbox as functional units. Though 
approximate analysis cannot bring precise quantitative 
values for particular situations, its coarse-grained results 
can shed light on global dynamic characteristics as well as 
suggest further fine-grained experiments. Applicable to 
the Structural Analysis Toolbox, the analysis results are 
incorporated into its corresponding augmented circuit 
template for subsequent analysis. 
 
fåÑçêã~íáçå=^Åèìáëáíáçå=i~óÉê=

This layer has components for information acquisition 

from in-house experiments, local databases, and external 
web accessible bioinformatics databases. 
 

a~í~=mêÉé~ê~íáçå=qççäÄçñ=
Raw experiment data requires several steps of preproc-

essing including normalization, interpolation, extrapola-
tion, and transformation. Specific procedures for the 
preprocessing tasks vary depending on the characteristics 
of the raw data. Raw data types in the current version 
include profiles of the microarray gene expressions, me-
tabolism, and proteins. A data preparation toolbox adds 
relevant raw data profiles to the corresponding bio-
entities in the entity level augmented circuit template. 
 
içÅ~ä=fåÑçêã~íáçå=^ÅÅÉëë=qççäÄçñ=
Local information for biological circuit reverse engi-

neering includes in-house experiment data, downloaded 
bioinformatics databases and preprocessed secondary 
databases. Extensible objectrelational schemas are de-
signed to store and manage this information in a unified 
way. Some data types can be transformed to object-
relational formats, while others are stored in their own 
formats along with corresponding file descriptors in the 
central database. An augmented circuit template can have 
pointers to or copies of relevant data items. This attach-
ment is a part of the augmented circuit template enrich-
ment process. 
 
tÉÄ=fåÑçêã~íáçå=^ÅÅÉëë=qççäÄçñ=
Currently, over 500 public bioinformatics databases are 

accessible through the Web, which encompasses DNA 
sequences, biological pathways, and disease information. 
It is crucial and demonstrates the essential power of bio-
informatics to utilize this information. This toolbox con-
nects to various Web search engines to find relevant in-
formation, building indices for rapid and focused ac-
cesses. Text mining capabilities are also included in this 
toolbox to extract relevant information from textual in-
formation segments like Medline abstracts. 
 

aáëÅìëëáçå=~åÇ=`çåÅäìÇáåÖ=oÉã~êâë=
 

This paper has introduced existing techniques for bio-
system reverse engineering. It describes the representa-
tive approaches for network structure inference including 
Correlation Matrix Construction (CMC), Boolean net-
work and Bayesian network-based methods. 

It also explains the different techniques for structural 
and dynamic analysis of target biosystems, introducing 
some commonly used software tools in the field. Based 
on the three proposed design principles, a component-
based software architecture for biosystem reverse engi-
neering is proposed. The architecture identifies essential 
functions, and organizes them into 11 components in 
three layers. By adopting the Web Services protocol, it 
has a higher extensibility level and requires less effort for 
accommodating existing solutions. 

Currently, several components are being plugged into 
the architecture. A Bayesian network inference compo-
nent called MONET, which itself is a two-tier distributed 



_áçíÉÅÜåçäK=_áçéêçÅÉëë=båÖK=OMMRI=sçäK=NMI=kçK=R= T=

 

system utilizing 32-way parallel processing, is being 
adapted for network structure inference. A web search 
engine equipped with text mining capabilities referred to 
as “UNICORN” is also being adapted for the information 
acquisition and fusion functions. Our own components 
for structural and dynamic analysis functions are being 
developed while existing tools such as MetaFluxNet are 
integrated. 
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