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PAPER

Assessing the Quality of Fuzzy Partitions Using Relative
Intersection

Dae-Won KIM†a), Young-il KIM††, Doheon LEE†, and Kwang Hyung LEE†,††, Nonmembers

SUMMARY In this paper, conventional validity indexes are reviewed
and the shortcomings of the fuzzy cluster validation index based on inter-
cluster proximity are examined. Based on these considerations, a new clus-
ter validity index is proposed for fuzzy partitions obtained from the fuzzy
c-means algorithm. The proposed validity index is defined as the average
value of the relative intersections of all possible pairs of fuzzy clusters in
the system. It computes the overlap between two fuzzy clusters by consid-
ering the intersection of each data point in the overlap. The optimal number
of clusters is obtained by minimizing the validity index with respect to c.
Experiments in which the proposed validity index and several conventional
validity indexes were applied to well known data sets highlight the superior
qualities of the proposed index.
key words: cluster validity, fuzzy clustering, fuzzy c-means

1. Introduction

Fuzzy clustering algorithms partition a data set into c ho-
mogeneous fuzzy clusters. Of the fuzzy clustering methods
developed to date, the fuzzy c-means (FCM) algorithm [1]
is the most widely used. The FCM method requires the
number of clusters as an input, and the analysis result can
vary greatly depending on the value chosen for this vari-
able. However, in many cases the exact number of clusters
in a data set is not known. In such cases, we can use a range
of c values and then devise a validation index to determine
the optimal number of clusters.

For this evaluation process, referred to as cluster va-
lidity, numerous validity indexes have been developed [1]–
[7], [15]. Most of these indexes measure intra-cluster com-
pactness and inter-cluster separation using cluster centroids.
However, interpretation of inter-cluster separation of these
indexes is problematic because such indexes quantify cluster
separation based on the distance between cluster centroids
only [15].

Recently, Kim et al. [15] proposed a fuzzy cluster val-
idation index (vP) based on inter-cluster proximity. Their
index focuses on the degree to which pairs of clusters are
separated by measuring the degree of overlap between clus-
ters. Compared to conventional validity measures, the index
of Kim et al. [15] showed superior performance when ap-
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plied to a variety of well known data sets. However, it still
suffers from the monotonic decreasing tendency with an in-
creasing number of clusters. Moreover, it is sensitive to the
choice of model parameters, and therefore determination of
appropriate values for those parameters is crucial to the re-
liability of the index.

In this paper, the problems associated with conven-
tional validity indexes are reviewed and their shortcomings
are studied. Taking the problems of existing algorithms into
account, a new cluster validity index for FCM is proposed
that quantifies the relationship between each pair of clusters
by calculating the relative intersection of two fuzzy sets. In
this method, the intersection between two fuzzy clusters is
computed by considering the degree of sharing of each da-
tum in the overlap. Finally, the performance of the new va-
lidity measure is tested by applying it to well known data
sets and comparing the results with those obtained using
conventional validity indexes.

The remainder of this paper is organized as follows:
Section 2 provides background information of fuzzy clus-
tering and discusses previous work in cluster validity; Sec-
tion 3 describes the formulation of the proposed validity in-
dex; Section 4 gives the results of experiments on a variety
of data sets; and Section 5 presents our concluding remarks.

2. Fuzzy Cluster Validity Index

2.1 Fuzzy c-Means Algorithm

Fuzzy clustering algorithms generate a fuzzy partition given
as a fuzzy partition matrix U = [µi j], where µi j = µF̃i

(x j) is
the membership value of the data x j belonging to the fuzzy
cluster F̃i. Fuzzy clustering algorithms are less prone to
falling into local minima than crisp clustering algorithms
because they make soft decisions at each iteration through
the use of membership functions [8]–[12].

The most widely used fuzzy clustering algorithm is
the FCM algorithm proposed by Bezdek [1]. This algo-
rithm classifies a collection of data X into c homogeneous
groups. The objective of FCM is to obtain a fuzzy c-
partition F̃ = {F̃1, . . . , F̃c} for the given number of clusters c
and the given data X = {x1, . . . , xn} by minimizing the eval-
uation function Jm,

Jm(U,V : X) =
c∑

i=1

n∑
j=1

µm
i j||x j − vi||2 (1)

where V = (v1, . . . , vc) is a vector of the centroids of the
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fuzzy clusters (F̃1, . . . , F̃c), || · || is a Euclidean norm, and
m controls the fuzziness of membership of each datum. A
fuzzy partition can be represented by (U,V). FCM tries to
minimize Jm(U, V : X) iteratively until no further improve-
ment is possible.

2.2 Conventional Cluster Validity Indexes

Cluster validity indexes are used to establish which partition
best explains the unknown cluster structure in a given data
set [16]. FCM is run over a range of c values, 2, . . . , cmax,
and the resulting fuzzy partition is evaluated with the valid-
ity indexes to identify the optimal number of clusters. Usu-
ally, cmax ≈ √n is used [4].

Bezdek proposed two cluster validity indexes for fuzzy
clustering [2], [3]. These indexes, which are referred to as
the Partition Coefficient (vPC) and Partition Entropy (vPE),
are defined as

vPC =

∑n
j=1
∑c

i=1 µ
2
i j

n
, (2)

vPE = −1
n

n∑
j=1

c∑
i=1

[µi j loga(µi j)]. (3)

The optimal fuzzy partition is obtained by maximizing vPC

(or minimizing vPE) with respect to c = 2, . . . , cmax.
Xie and Beni proposed a validity index (vXB) that fo-

cuses on two properties: compactness and separation [5].
vXB is defined as

vXB =

∑c
i=1
∑n

j=1 µ
2
i j||x j − vi||2

n( min︸︷︷︸
i�k

||vi − vk ||2)
(4)

In this equation, the numerator is the sum of the compact-
ness of each fuzzy cluster and the denominator is the mini-
mal separation between fuzzy clusters. The optimal fuzzy
partition is obtained by minimizing VXB with respect to
c = 2, . . . , cmax.

vXB decreases monotonically as c→ n. Kwon extended
vXB to eliminate this decreasing trend [6] by adding a penalty
value to the numerator of vXB. Kwon’s index (vK) is given
as

vK =

∑n
j=1
∑c

i=1 µ
2
i j||x j − vi||2 + 1

c

∑c
i=1 ||vi − v̄||2

min︸︷︷︸
i�k

||vi − vk ||2 (5)

Rezaee combined a measure of the average scatter of c
clusters, Scat(c), with the distance functional, Dist(c) [7].
Rezaee’s validity index (vCWB) is defined as

vCW B = αScat(c) + Dist(c)

= α

∑c
i=1 ||σ(vi)||
c||σ(X)||

+
Dmax

Dmin

c∑
k=1


c∑

z=1

||vk − vz||

−1

(6)

whereσ(vi) is the fuzzy variance of the i-th cluster, andσ(X)
represents the variance of the data set X. Dmax and Dmin are
the maximum and minimum distances between the cluster
centroids respectively.

As recently pointed out by Kim et al. [15], most valid-
ity indexes focus only on the compactness and the variation
of the intra-cluster distance [5]–[7]. Some indexes, for ex-
ample vXB, vK and vCWB, use the strength of separation be-
tween clusters; however, interpretation of these indexes is
problematic because they quantify cluster separation based
only on the distance between cluster centroids [15]. The
problem addressed by Kim et al. is demonstrated in Fig. 1,
which shows two different fuzzy partitions (U (a),V (a)) and
(U (b),V (b)) with the same distance between cluster centroids
for some data. In this figure, even though (U (b),V (b)) pro-
vides a better partitioning than (U(a),V (a)), conventional va-
lidity indexes cannot discriminate between these two fuzzy
partitions because they only use distance between the cluster
centroids.

To tackle this problem, Kim et al. proposed a new va-
lidity index that exploits the geometric properties of fuzzy
clusters [15]. Their approach is based on an inter-cluster
proximity index (vP) between fuzzy sets. vP is defined as
follows,

vP =
2

c(c − 1)

c∑
p�q


∑
µ

n∑
j=1

δ(x j, µ : F̃p, F̃q)ω(x j)

 (7)

where δ(x j, µ : F̃p, F̃q) = 1 if µF̃p
(x j) ∧ µF̃q

(x j) ≥ µ and 0
otherwise.
δ(x j, µ : F̃p, F̃q) determines whether two clusters are

proximate at the membership degree µ for data x j. It re-
turns a proximity of 1.0 when the membership degrees of
both clusters are greater than µ, and returns 0.0 otherwise.
ω(x j) ∈ [0.0, 1.0] is a weight function that is selected to give
more weight to vague data and less weight to clearly classi-

(a) Partition (U (a),V (a))

(b) Partition (U(b),V (b))

Fig. 1 Two different fuzzy partitions (U (a),V (a)) and (U(b),V (b)) with the
same distance between cluster centroids for some data.
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fied data. In the experiments of Kim et al. [15], ω(x j) was
assigned a value of 0.1 (µF̃i

(x j) ≥ 0.8), 0.4 (0.7 ≤ µF̃i
(x j) <

0.8), and 0.7 (0.6 ≤ µF̃i
(x j) < 0.7) for any F̃i ∈ F̃; other-

wise, ω(x j) was assigned a value of 1.0.

3. The Proposed Validity Index Using Relative Inter-
section

3.1 Motivation

The validity index vP uses the proximity between fuzzy clus-
ters, and determines this proximity based on the similarity
between fuzzy clusters. It focuses on the extent to which the
clusters in each cluster pair are separated by measuring the
degree of overlap between clusters. Furthermore, by using
ω(x j) for each datum, vP can concentrate more on highly
overlapped data in the computation of the validity index.
The optimal number of clusters is obtained by minimizing
vP with respect to c = 2, . . . , cmax. When applied to well
known test data sets, vP showed an excellent ability to find
the optimal number of clusters and to be more reliable than
other indexes [15].

Although vP has shown its superior validation perfor-
mance to other indexes, it has two shortcomings: (1) a
monotonic decreasing tendency for larger values of c, and
(2) the choice of weight function, ω(x j).

Let us consider the first issue. Like the problems
of the conventional validity indexes pointed out by Pal [4]
and Kwon [6], the proximity index vP still suffers from the
monotonic decreasing tendency when c approaches to larger
values. This is because vP is sensitive to the choice of µ.
As seen in Eq. (7), the proximity of two fuzzy clusters is
calculated in each µ level where {µ} is not explicitly formu-
lated [15].

When {µ} is an infinite set like µ ∈ (0.0, 1.0], vP = ∞
for all c values and the fuzzy cluster validation does not
give a meaningful result. When {µ} is an finite set like
{µ} = {1/d, 2/d, . . . , d/d} where d is a discretization unit,
the proximity of two fuzzy clusters can be rewritten from
Eq. (7),

∑
µ∈{1/d,...,d/d}

n∑
j=1

δ(x j, µ : F̃p, F̃q)ω(x j)

=

n∑
j=1

δ(x j, 1/d : F̃p, F̃q)ω(x j)

+

n∑
j=1

δ(x j, 2/d : F̃p, F̃q)ω(x j)

+ . . . +
n∑

j=1

δ(x j, d/d : F̃p, F̃q)ω(x j)

=
∑

µ∈{1/d,...,d/d}
δ(x1, µ : F̃p, F̃q)ω(x1)

+
∑

µ∈{1/d,...,d/d}
δ(x2, µ : F̃p, F̃q)ω(x2)

+ . . . +
∑

µ∈{1/d,...,d/d}
δ(xn, µ : F̃p, F̃q)ω(xn)

=

⌊
µF̃p

(x1) ∧ µF̃q
(x1)

1/d

⌋
ω(x1)

+

⌊
µF̃p

(x2) ∧ µF̃q
(x2)

1/d

⌋
ω(x2)

+ . . . +

⌊
µF̃p

(xn) ∧ µF̃q
(xn)

1/d

⌋
ω(xn)

=

n∑
j=1

⌊
d ·
[
µF̃p

(x j) ∧ µF̃q
(x j)
]⌋
ω(x j)

where the floor function 
τ� gives the largest integer less
than or equal to τ.

Let us define µmax1(x j), µmax2(x j) and µrest(x j) as fol-
lows:

µmax1(x j) = max({µi j|1 ≤ i ≤ c}),
µmax2(x j) = max({µi j|1 ≤ i ≤ c} − {µmax1(x j)}),
µrest(x j) = 1 − µmax1(x j) − µmax2(x j).

From Fig. 2, it is evident that

0 ≤ max
p�q

[
µF̃p

(x j) ∧ µF̃q
(x j)
]
≤ 1 − µrest(x j)

2
≤ 1

2
(8)

Hence, vP can be rewritten as

vP =
2

c(c − 1)

c∑
p�q

n∑
j=1

⌊
d ·
[
µF̃p

(x j) ∧ µF̃q
(x j)
]⌋
ω(x j)

≤ 2
c(c − 1)

c∑
p�q

n∑
j=1

⌊
d · 1 − µrest(x j)

2

⌋
ω(x j) (9)

Because the FCM algorithm is a probabilistic cluster-
ing algorithm [16], the membership values are assigned rel-
ative to each other. This means that as c increases, µrest(x j)
tends to increase. Hence we see from Eq. (9) that, for a fi-
nite level set {µ}, vP tends to decrease as the value of c in-
creases. This tendency becomes very marked for level sets
with higher resolutions (i.e., larger values of d), as will be

Fig. 2 The shaded region shows µmax1(x j) + µmax2(x j) + µrest(x j) = 1,
µmax1(x j) ≥ µmax2(x j) and µrest(x j) ≥ 0.
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seen in Sect. 4 (see Tables 2, 4 and 7).
Another shortcoming of vP lies on the choice of the

weight function, ω(x j). Kim et al. [15] used the following
simple step function in their experiments:

ω(x j) =



0.1 if µF̃q
(x j) ≥ 0.8

0.4 if 0.7 ≤ µF̃q
(x j) ≤ 0.8

0.7 if 0.6 ≤ µF̃q
(x j) ≤ 0.7

1.0 otherwise

(10)

However, this type of fixed ω(x j) does not reflect the depen-
dency of µF̃i

(x j) on different c values discussed above. Thus
a systematic way of weighting technique for fuzzy partitions
obtained from different c values is required.

3.2 Relative Intersection of Two Fuzzy Clusters

To solve the addressed problems, in the present study we
exploit two notions: a relative intersection and an entropy.
Firstly, to eliminate the monotonic decreasing tendency for
increasing c values, we employ the notion of relative inter-
section that is defined as the weighted sum of the relative
intersection for all data. Secondly, to calculate the weights
of data clustered for different c values, we use an entropy
function instead of the simple step function. Then, we pro-
pose a new validity index (vRI) that is defined as the aver-
age value of the relative intersections of all possible pairs of
fuzzy clusters in the system.

A relative intersection of two fuzzy clusters at each da-
tum x j is calculated before computing the total relative in-
tersection of two fuzzy clusters. Let F̃p and F̃q be two fuzzy
clusters belonging to a fuzzy partition (U,V) and c be the
number of clusters. Then the relative intersection of two
fuzzy clusters F̃p and F̃q at x j is defined as

IR(x j : F̃p, F̃q) =
µF̃p

(x j) ∧ µF̃q
(x j)

(1/c)
∑c

i=1 µF̃i
(x j)

(11)

In Eq. (11), the numerator is the intersection of F̃p and
F̃q at x j, indicating min(µF̃p

(x j), µF̃q
(x j)), and the denomi-

nator is the average membership value of x j over c fuzzy
clusters. Use of the relative intersection in validating fuzzy
partitions makes it possible to observe the relative quality of
two fuzzy clusters at the viewpoint of the whole partition.

Since
∑c

i=1 µF̃i
(x j) = 1 in FCM, IR(x j : F̃p, F̃q) can be

rewritten as

IR(x j : F̃p, F̃q) = c ·
[
µF̃p

(x j) ∧ µF̃q
(x j)
]

(12)

From Eqs. (11) and (12), we can see that although
µF̃p

(x j) ∧ µF̃q
(x j) tends to decrease (i.e., µrest(x j) increases)

for larger number of clusters, the value of IR is compensated
by the number of clusters c. Thus, the relative intersection IR

can avoid the monotonic decreasing tendency as the number
of clusters increases.

Figure 3 depicts two intersection values at datum x j

between two fuzzy clusters. Two fuzzy partitions, U (a) and
U (b), are shown in the figure. For simplicity, we assume that

(a) Partition (U (a),V (a))

(b) Partition (U(b),V (b))

Fig. 3 Intersection of two fuzzy clusters: (a) partition (U(a),V (a)), (b)
partition (U (b),V (b)).

each fuzzy cluster is represented by a triangular fuzzy set.
Given the membership degrees µF̃ (a)

p
(x j) and µF̃ (a)

q
(x j), rela-

tive intersection IR(x j : F̃(a)
p , F̃

(a)
q ) is obtained by the product

of c and µF̃ (a)
p

(x j)∧ µF̃ (a)
q

(x j). When we compare two relative

intersection values IR(x j : F̃(a)
p , F̃

(a)
q ) and IR(x j : F̃(b)

p , F̃
(b)
q )

for the partitions U (a) and U (b), IR(x j : F̃(b)
p , F̃

(b)
q ) is given

a lower value than IR(x j : F̃(a)
p , F̃

(a)
q ). This indicates that

the partition U (b) more clearly classified the datum x j than
U (a). By considering the intersections for all x j ∈ X, we
can see that the partition U (a) contains a greater number of
vague data than U (b), and hence U (b) is the better of the two
partitions.

When assessing fuzzy clusters, it is of importance to
use information regarding how vaguely (unclearly) the da-
tum x j is classified over c different clusters. The more
clearly classified data the fuzzy clusters have, the better the
quality of the fuzzy partition. To quantify how clearly the
datum x j is classified, the entropy of x j is exploited in the
present study, which is defined as

E(x j) = −
c∑

i=1

µF̃i
(x j) loge µF̃i

(x j) (13)

Here, E(x j) is the entropy of datum x j and µF̃i
(x j) is

the membership value with which x j belongs to cluster F̃i.
By the properties of entropy, the greater the vagueness of
the classified datum x j, the greater the entropy of x j. By
considering this entropy, vague data are given more weight
than clearly classified data when assessing fuzzy clusters.
Unlike ω(x j) used in vP [15], E(x j) reflects the dependency
of µF̃i

(x j) with respect to different c values. This approach
makes it possible to focus more on the highly-overlapped
data in the computation of the validity index than other in-
dexes do.

Definition 1: Let F̃p and F̃q be two fuzzy clusters belong-
ing to a pattern matrix U. Let IR(x j : F̃p, F̃q) be a relative
intersection at datum x j between F̃p and F̃q. And let E(x j)
be an entropy of x j in fuzzy clusters. Then, the relative in-
tersection of fuzzy clusters F̃p and F̃q is defined as
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IR(F̃p, F̃q) =
n∑

j=1

IR(x j : F̃p, F̃q)E(x j), (14)

IR(F̃p, F̃q) is formulated as the weighted summation of
IR(x j : F̃p, F̃q) for all data in X. E(x j) means the degree of
vagueness for each datum x j. A small value of IR(F̃p, F̃q) in-
dicates that F̃p has little intersection with F̃q, and therefore,
two fuzzy clusters F̃p and F̃q are well-classified.

3.3 The Proposed Validity Index

Now we propose a new validity index based on the rela-
tive intersection. The proposed validity index is the aver-
age value of the relative intersections of all possible pairs of
fuzzy clusters in the system.

Definition 2: Let F̃p and F̃q be two fuzzy clusters belong-
ing to a fuzzy partition (U,V) and c be the number of clus-
ters. Let IR(F̃p, F̃q) be the relative intersection of two fuzzy
clusters. Then the proposed validity index vRI is defined as

vRI(c,U) =
2

c(c − 1)

c∑
p�q

IR(F̃p, F̃q) (15)

Thus, vRI is defined as the average value of the relative
intersections of c(c−1)

2 pairs of clusters, where the relative
intersection of each cluster pair is defined as the weighted
sum of the relative intersection at x j of two clusters in the
pair. Hence, the less overlap there is in a fuzzy partition,
and the less vague the data points in that overlap, the lower
the value of vRI(c,U). The optimal number of clusters is
obtained by minimizing vRI(c,U) over the range of c values,
2, . . . , cmax. The procedure for finding the optimal number
of clusters (or the optimal fuzzy partition) obtained through
the FCM algorithm using vRI is described above.

Algorithm 1 Find the optimal number of clusters

Input: data X = {x1, . . . , xn}, maximum clusters cmax

termination criterion ε, fuzziness m
Output: the optimal number of clusters copt

Procedure:
1: cmax ← √n,m← 2.0, ε ← 0.001, J(0)← ∞;
2: for (c← 2; c < cmax; c + +) do
3: t ← 1;
4: Initialize the cluster centroids V(t);
5: Compute the pattern matrix U(t);
6: while |J(t) − J(t − 1)| > ε do
7: t← t + 1;
8: Update the cluster centroids V(t);
9: Update the pattern matrix U(t);

10: end while
11: Compute the validity index vRI(c,U);
12: end for
13: Find the optimal c: copt ← argc min vRI(c,U);

4. Experiments

To test the performance of vRI , we used it to determine the
optimal cluster numbers in seven well known data sets and
compared the results with those obtained using vPC , vPE ,
vXB, vK , and vP with three different level sets (v0.1

P with
µ ∈ {0.1,0.2, . . . , 1.0}, v0.01

P with µ ∈ {0.01, 0.02, . . . , 1.0}
and v0.001

P with µ ∈ {0.001, 0.002, . . . , 1.0}).
The data sets used for these experiments were

X30 [14], Bensaid [13], AD-2 (2-clusters), AD-9 (9-
clusters), AD-3D (4 clusters in 3D), a superset of
Starfield [5], [15], and Iris [4]. The raw (unscaled) data were
used without normalization. The parameters of the FCM
were set as follows: termination criterion ε = 0.001, weight-
ing exponent m = 2.0, and Euclidean norm. Initial cen-
troids were selected randomly. For the evaluation of valid-
ity indexes, cmax ≈ √n was used [4]. For v0.1

P , v0.01
P and

v0.001
P , ω(x j) in the proximity function was assigned a value

of 0.1 (µF̃i
(x j) ≥ 0.8), 0.4 (0.7 ≤ µF̃i

(x j) < 0.8), and 0.7
(0.6 ≤ µF̃i

(x j) < 0.7) for any F̃i ∈ F̃; otherwise, ω(x j)
was set to 1.0, as per the work of Kim et al. Figs. 4–8 show
scatter plots of five of the seven data sets used in the exper-
iment, and Tables 1–7 show the results of the evaluation of
each cluster validation index. Optimal c values are shown in
bold face in the tables.

Fig. 4 Bensaid data set. 49 data points. Optimal cluster number is 3.

Fig. 5 AD-2 data set. 400 data points. Optimal cluster number is 2.
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Fig. 6 AD-9 data set. 180 data points. Optimal cluster number is 9.

Fig. 7 AD-3D data set. 40 data points. Optimal cluster number is 4.

Fig. 8 Starfield data set. 66 data points. Optimal cluster number is 9.

Table 1 Cluster validity values for the X30 data set. Optimal cluster number is 3.

c vPC vPE vXB vK vCWB v0.1
P v0.01

P v0.001
P vRI

c=2 0.91 0.08 0.04 1.45 5.8 7.20 34.00 313.20 1.82
c=3 0.97 0.04 0.02 1.82 2.47 6.00 8.20 42.33 0.19
c=4 0.93 0.07 0.08 11.97 2.60 9.67 24.17 190.10 1.06
c=5 0.87 0.12 2.15 171.76 7.57 9.98 30.94 252.24 2.09

The data points of the X30 [14] are arranged in three
compact and well-separated clusters, each containing 10
points. For the X30, all of the validity indexes except vK

correctly identified the optimal number of clusters (Table 1).
For the Bensaid data set [13], which consists of 49

data points that are distributed in three compact and well-
separated clusters containing different numbers of points
(see scatter plot in Fig. 4), five cluster validity indexes in-
cluding the proposed index vRI correctly recognized the op-
timal c = 3. v0.01

P and v0.001
P show the tendency to decrease

with increasing c (Table 2). As pointed out in the previous
section, vP is sensitive to the choice of the level set {µ}.

The third data set is the AD-2 data set, which consists
of 400 data points that are distributed in two separated clus-
ters. Figure 5 shows the scatter plot of this data, each clus-
ter contains 200 data points. The validation results of the
indexes for c = 2, 3, . . . , cmax = 17 are listed in Table 3. For
this data set, vPC , vPE , vXB, vK , and vRI correctly identified
the optimal number of clusters. In contrast, vCW B, v0.1

P , v0.01
P ,

and v0.001
P failed to detect the optimal number of clusters. It

is observed that vP showed the tendency to decrease with
increasing c (Table 3).

The fourth data set, the AD-9, was constructed by gen-
erating 20 data points with a normal distribution and then
creating nine copies of this cluster of 20 points and placing
these copies at adjacent positions. Figure 6 shows the scat-
ter plot of this data, which is distributed into nine clusters.
The validation results of each index for c = 2, 3, . . . , cmax =√

n ≈ 13 are listed in Table 4. For this data set, vPC , vPE ,
v0.01

P and v0.001
P failed to detect the optimal number of clus-

ters, and v0.01
P and v0.001

P showed the tendency to decrease
with increasing c (Table 4).

Figure 7 shows the AD-3D data set in which ten data
points were generated randomly in three-dimensional space
and then copied to four positions in a diagonal arrangement.
Three of the clusters were placed adjacent to each other, and
one cluster was separated from them. Table 5 shows the
results obtained using the various validity indexes with re-
spect to c = 2, 3, . . . , cmax =

√
n ≈ 6. Only v0.1

P , v0.01
P , v0.001

P
and vRI successfully detected the optimal number of clus-
ters. In contrast, vPC , vPE , vXB, and vK determined the opti-
mal value to be c = 2, and vCW B yielded optimal partitions
at c = 3. vXB and vK could not detect the optimal number
of clusters because they use only the distance between cen-
troids to measure the separation: the maximum separation is
obtained when the number of clusters is two.

Figure 8 shows the scatter plot of a superset of the
Starfield data set [5], [15]. The data set has 66 data points
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Table 2 Cluster validity values for the Bensaid data set. Optimal cluster number is 3.

c vPC vPE vXB vK vCWB v0.1
P v0.01

P v0.001
P vRI

c=2 0.72 0.19 0.24 11.92 0.84 112.60 993.20 9793.40 21.44
c=3 0.75 0.20 0.07 4.12 0.62 39.87 281.67 2706.47 13.06
c=4 0.67 0.26 0.22 15.06 0.55 63.00 378.50 3585.63 17.399
c=5 0.66 0.30 0.12 8.70 0.46 58.92 302.28 2835.160 19.50
c=6 0.63 0.33 0.10 7.92 0.43 56.07 276.25 2532.97 21.55
c=7 0.61 0.36 0.10 9.20 0.44 58.74 251.92 2273.96 23.69

Table 3 Cluster validity values for the AD-2 data set. Optimal cluster number is 2.

c vPC vPE vXB vK vCW B v0.1
P v0.01

P v0.001
P vRI

c=2 0.80 0.14 0.11 42.67 6.24 727.60 6325.00 62396.00 120.48
c=3 0.69 0.24 0.13 52.98 5.59 606.00 4642.68 45040.60 160.78
c=4 0.67 0.28 0.11 44.46 5.05 432.33 2799.40 26584.13 149.56
c=5 0.62 0.34 0.16 67.65 5.65 458.74 2537.00 23746.40 175.62
c=6 0.56 0.40 0.32 134.03 7.32 528.43 2696.40 24981.21 227.93
c=7 0.57 0.40 0.22 90.67 6.73 462.38 1860.08 16784.63 185.85
c=8 0.55 0.43 0.15 63.23 6.14 487.54 1712.71 15090.92 191.39
c=9 0.53 0.45 0.14 60.83 6.33 498.28 1600.65 13931.18 204.65
c=10 0.51 0.48 0.17 75.97 7.05 515.95 1511.73 12946.96 218.96
c=11 0.51 0.50 0.16 68.62 7.04 516.93 1380.91 11548.57 216.67
c=12 0.50 0.51 0.26 117.59 8.69 520.07 1291.93 10606.14 222.97
c=13 0.47 0.56 0.39 171.22 10.85 541.48 1347.51 11051.56 264.47
c=14 0.46 0.57 0.20 89.76 8.45 552.46 1232.33 9758.08 250.34
c=15 0.46 0.58 0.39 175.05 11.80 545.69 1174.88 9284.43 262.74
c=16 0.47 0.57 0.21 95.88 9.62 531.60 1051.46 8047.13 241.95
c=17 0.47 0.58 0.18 85.46 9.33 534.65 996.19 7402.19 238.20

Table 4 Cluster validity values for the AD-9. Optimal cluster number is 9.

c vPC vPE vXB vK vCWB v0.1
P v0.01

P v0.001
P vRI

c=2 0.68 0.21 0.34 60.78 0.82 561.00 4930.40 48718.60 97.38
c=3 0.61 0.30 0.14 25.32 0.61 428.00 3275.33 31910.73 111.96
c=4 0.59 0.34 0.09 16.73 0.49 305.23 2344.90 22648.83 120.36
c=5 0.56 0.39 0.17 32.65 0.47 269.36 1811.28 17230.52 128.38
c=6 0.54 0.42 0.13 25.17 0.43 257.44 1501.31 14115.43 134.65
c=7 0.56 0.42 0.11 20.62 0.39 216.03 1086.17 9993.82 119.36
c=8 0.58 0.42 0.08 15.04 0.35 189.44 826.55 7438.34 108.53
c=9 0.58 0.43 0.06 12.18 0.33 186.52 650.75 5663.74 90.98
c=10 0.56 0.46 0.20 40.63 0.41 201.27 645.70 5543.20 99.73
c=11 0.54 0.48 0.27 55.28 0.45 208.14 613.69 5182.65 105.12
c=12 0.53 0.50 0.18 37.47 0.41 224.86 607.07 5094.46 110.18
c=13 0.51 0.53 0.17 36.70 0.41 226.89 581.07 4793.49 115.89

Table 5 Cluster validity values for the AD-3D data set. Optimal cluster number is 4.

c vPC vPE vXB vK vCWB v0.1
P v0.01

P v0.001
P vRI

c=2 0.83 0.12 0.07 2.87 8.16 77.60 682.60 6722.60 11.27
c=3 0.80 0.16 0.07 3.66 7.92 30.93 198.47 1902.33 7.18
c=4 0.78 0.20 0.09 5.70 10.14 12.37 49.27 446.83 5.62
c=5 0.71 0.26 0.45 30.57 18.98 23.18 87.94 806.46 7.51
c=6 0.64 0.32 0.34 24.72 18.66 40.23 148.23 1327.60 11.57

Table 6 Cluster validity values for the Starfield data set. Optimal cluster number is 9.

c vPC vPE vXB vK vCW B v0.1
P v0.01

P v0.001
P vRI

c=2 0.73 0.18 0.24 16.04 0.38 148.60 1264.40 12468.20 26.89
c=3 0.66 0.26 0.12 8.29 0.27 93.33 721.53 6987.27 29.14
c=4 0.62 0.32 0.12 8.72 0.23 96.17 698.90 6748.80 35.90
c=5 0.63 0.34 0.16 11.68 0.20 72.72 450.82 4240.20 32.90
c=6 0.62 0.35 0.17 13.42 0.18 73.31 405.64 3760.07 34.22
c=7 0.66 0.33 0.11 9.61 0.14 57.83 269.20 2451.04 28.66
c=8 0.67 0.33 0.09 8.33 0.13 54.01 220.44 1959.08 27.05
c=9 0.70 0.31 0.08 8.40 0.12 42.25 138.33 1192.70 20.82
c=10 0.63 0.40 0.45 40.30 0.15 53.37 174.01 1502.78 29.82
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Table 7 Cluster validity values for Iris data set. Optimal cluster number is 2.

c vPC vPE vXB vK vCW B v0.1
P v0.01

P v0.001
P vRI

c=2 0.89 0.09 0.05 8.39 5.04 99.60 741.80 7203.20 17.43
c=3 0.78 0.17 0.14 21.99 4.46 135.73 896.20 8580.20 31.84
c=4 0.71 0.24 0.20 32.43 4.77 150.10 868.63 8180.87 43.97
c=5 0.63 0.31 0.40 68.14 5.35 174.60 800.14 7338.76 48.90
c=6 0.57 0.36 0.74 128.81 6.55 189.33 752.20 6771.81 57.11
c=7 0.53 0.41 1.54 268.73 8.95 204.69 748.12 6605.32 67.24
c=8 0.52 0.44 0.44 84.43 6.33 203.25 649.00 5625.11 67.83
c=9 0.49 0.47 0.77 151.23 7.93 212.80 618.19 5176.12 72.60
c=10 0.47 0.50 1.27 252.76 9.97 215.95 583.43 4800.84 77.30
c=11 0.46 0.53 1.19 237.96 10.14 214.95 554.30 4499.80 83.28
c=12 0.43 0.55 0.50 106.46 8.15 230.46 554.92 4441.20 89.64

Table 8 Values of c preferred by each cluster validity index for six data sets.

Data sets copt vPC vPE vXB vK vCW B v0.1
P v0.01

P v0.001
P vRI

X30 3 3 3 3 2 3 3 3 3 3
Bensaid 3 3 2 3 3 6 3 7 7 3
AD-2 2 2 2 2 2 4 4 17 17 2
AD-9 9 2 2 9 9 9 9 13 13 9

AD-3D 4 2 2 2 2 3 4 4 4 4
Starfield 9 2 2 9 3 9 9 9 9 9

Iris 2 2 2 2 2 3 2 11 12 2

that can be assigned to 9 clusters by reasonably optimal par-
titions [15]. Table 6 lists the results of validity indexes for
c = 2, 3, . . . , cmax = 10. Of the indexes considered, vXB,
vCWB, v0.1

P , v0.01
P , v0.001

P , and vRI correctly specified the opti-
mal number of clusters as 9. vPC and vPE considered two
clusters to be a natural structure, and vK points to c = 3
clusters as the optimal partition.

Iris data set is known to have 3 clusters; however, two
of the clusters are highly overlapped [4]. In view of the geo-
metric structure of Iris data, discussed previously by Pal and
Bezdek [4], we took the optimal number of clusters for this
data set as 2. Table 7 shows the validation results of each
index for c = 2, 3, . . . , cmax =

√
n ≈ 12. The optimal c = 2

is identified by vPC , vPE , vXB, v0.1
P , and vRI . vCWB pointed

c = 3 as the optimal number of clusters. In contrast, v0.01
P

and v0.001
P both failed to detect the optimal number of clus-

ters, and also show the tendency to decrease with increasing
c. Once again, the sensitivity of vP to the choice of the level
set causes this index to fail.

Table 8 summarizes the results obtained when each va-
lidity index was applied to the seven data sets. The col-
umn copt gives the optimal number of clusters for each data
set, and the other columns show the optimal cluster num-
bers obtained using each index. The proposed index vRI is
the only index that correctly recognizes the number of clus-
ters for all data sets. vP also shows the superior performance
to other indexes at µ ∈ {0.1, 0.2, . . . , 1.0}; however, its per-
formance is dependent on the choice of the level set, {µ}.
For µ ∈ {0.01, 0.02, . . . , 1.0} and µ ∈ {0.001, 0.002, . . . , 1.0},
v0.01

P and v0.001
P show the tendency to decrease with increas-

ing c, and hence incorrectly identify the optimal c for four
of the seven data sets. Although v0.1

P showed less decreasing
tendency than v0.01

P and v0.001
P , it was also problematic when

applied to the AD-2 data set. vXB correctly identifies the

optimal c in all data sets except AD-3D. vPC and vPE incor-
rectly identify the optimal as c = 2 for the AD-9, AD-3D,
Starfield data sets. The index vK fails to recognize copt in the
X30, AD-3D, Starfield data sets, while vCWB shows correct
validation results in three of the seven data sets.

5. Discussion and Conclusions

In this paper, the problems of conventional validity indexes
are reviewed and two of the shortcomings of the validity
index of Kim et al. [15] (vP) are examined. A new clus-
ter validity index for the FCM algorithm is proposed. This
validity index is defined as the average value of the rela-
tive intersections of all possible pairs of fuzzy clusters in
the system. It computes the overlap of each pair of fuzzy
clusters by considering the intersection of each data point
in the overlap. The optimal number of clusters is obtained
by minimizing the validity index. Finally, the performance
of the proposed validity index was tested by applying it to
well known data sets and comparing the results with those
obtained using several other validity indexes. The results
indicate that the proposed validity index is very reliable.

However, the proposed approach is not without draw-
backs. Like every other validity index for FCM, the pro-
posed index depends on results obtained using the FCM al-
gorithm. If FCM falls into local optima, the evaluation of
validity indexes is useless. The data sets considered here
were limited to hyper-spherical shapes because FCM uses a
centroid prototype. Since the proposed validity index does
not explicitly rely on the centroid prototype, we plan to ap-
ply the proposed validity index to other fuzzy clustering al-
gorithms in the future.
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