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Abstract

In this paper the conventional subtractive clustering method is extended by calculating the mountain value of each

data point based on a kernel-induced distance instead of the conventional sum-of-squares distance. The kernel function

is a generalization of the distance metric that measures the distance between two data points as the data points are

mapped into a high dimensional space. Use of the kernel function makes it possible to cluster data that is linearly

non-separable in the original space into homogeneous groups in the transformed high dimensional space. Application

of the conventional subtractive method and the kernel-based subtractive method to well-known data sets showed the

superiority of the proposed approach.

� 2004 Published by Elsevier B.V.
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1. Introduction

Clustering has emerged as a popular technique

for pattern recognition, image processing, and,

most recently, data mining. Data clustering, also
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known as cluster analysis, classifies a collection

of unlabeled data patterns into homogeneous clus-

ters based on a similarity measure (Jain and

Dubes, 1998; Jain et al., 1999). A variety of cluster-

ing algorithms have been proposed, including the

hierarchical, k-means, and fuzzy c-means algo-
rithms (Bezdek et al., 1999).

Yager and Filev developed the mountain meth-

od for estimating cluster centroids (Yager and Fi-

lev, 1994). This simple method estimates the

cluster centroids by constructing and destroying
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the mountain function on a grid space. However,

although the mountain method is effective for

low-dimensional data sets, it becomes prohibi-

tively inefficient when applied to high-dimensional

data. To reduce the computational complexity of
this method, Chiu suggested calculating the moun-

tain function on the data points rather than the

grid points, an approach known as the subtractive

method (Chiu, 1995). Velthuizen improved the

implementation of the mountain and subtractive

methods to allow large data sets to be clustered

effectively (Velthuizen et al., 1997), and Pal ex-

tended these algorithms to detect circular shell-
shaped clusters (Pal and Chakraborty, 2000).

Yao used an entropy function in place of the

mountain function; under this approach, a data

point with minimum entropy is selected as a candi-

date cluster centroid (Yao et al., 2000).

A kernel function measures the distance be-

tween two data points as the data points are

mapped into a high dimensional feature space in
which the data is linearly separable (Muller

et al., 2001; Girolami, 2002). Several kernel-based

learning methods, for example support vector ma-

chine (SVM), have recently shown remarkable per-

formance in supervised learning (Scholkopf and

Smola, 2002; Zhang and Chen, 2003; Muller

et al., 2001; Girolami, 2002; Vapnik, 1998; Wu

and Xie, 2003; Zhang and Rudnicky, 2002). In
the present work, we introduce a kernel-based sub-

tractive method in which the kernel function is

incorporated into the calculation of the moun-

tains. The kernel-induced mountain values in-

crease the separability of data by working in a

high dimensional space; thus, as shown in this

paper, the proposed method is characterized by

higher clustering accuracy than the original sub-
tractive method.

The remainder of this paper is organized as fol-

lows. Section 2 provides background information

on the mountain function and discusses the

issues associated with conventional methods for

estimating cluster centroids. In Section 3, the pro-

posed kernel-based subtractive method is formu-

lated. Section 4 highlights the potential of the
proposed approach through various experimental

examples. Concluding remarks are presented in

Section 5.
2. Previous works

2.1. The mountain method

In the original mountain method, proposed by
Yager and Filev (1994), a grid is created in the

data space, and then a potential function, referred

to as the mountain function, is calculated on each

grid point. The grid points with higher mountain

values are selected as the cluster centroids.

Let us consider an unlabeled data set X =

{x1, . . . ,xn} in the p-dimensional space Rp. Let

xjk be the k-th coordinate of the j-th data point
for 1 6 j 6 n and 1 6 k 6 p. The p-dimensional

space Rp is restricted to a p-dimensional hypercube

I1 · I2 · � � � · Ip where the intervals Ik, 1 6 k 6 p

are defined by the ranges of the coordinates xjk.

Obviously, the hypercube contains the data set

X. Then the intervals Ik are subdivided into rk
equidistant points. This discretization forms a p-

dimensional grid in the hypercube with grid points
vi for 1 6 i 6 N where N(= r1 · � � � · rp) is the num-

ber of grid points.

Let d(vi,xj)
2 = kvi � xjk2 be the square of dis-

tance between a grid point vi and a data point xj.

Of the distance measures proposed to date, the

Euclidean distance is the most widely used (Bezdek

et al., 1999; Yager and Filev, 1994). The mountain

function at a grid point vi is defined as

MðviÞ ¼
Xn
j¼1

e�akvi�xjk2 ð1Þ

where a is a positive constant. A higher value of

the mountain function indicates that vi has more

data points xj in its vicinity. Thus, it is reasonable

to select a vi with a high value of the mountain

function M(vi) as a cluster centroid.

After calculating the mountain function for
each grid point, the cluster centroids are selected

by destroying the mountains. Let M�
1 be the maxi-

mum value of the mountain function:

M�
1 ¼ Maxi½MðviÞ	 ð2Þ

and let v�1 be the grid point whose mountain value
is M�

1. Then v�1 is selected as the first cluster cent-

roid. To find other cluster centroids, we must first

eliminate the effects of the cluster centroids that

have already been identified. To achieve this, a
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value inversely proportional to the distance of the

grid point from the found centroids is subtracted

from the previous mountain function; this process

is carried out using the equation:

bMjðviÞ ¼ bMj�1ðviÞ �M�
j�1

Xn
j¼1

e
�bkvi�v�j�1

k2 ð3Þ

where bMj
is the new mountain function, bMj�1

is

the old mountain function, M�
j�1 is the maximum

value of bMj�1
, v�j�1 is the newly found centroid,

and b is a positive constant. From Eq. (3), we

see that the mountain values of grid points closer

to the newly found centroid are decreased to a

much greater extent than those further away.

Thus, the procedure to approximate the cluster

centroids is as follows:

Step 1. Initialize the parameters a, b and the
intervals Ik, 1 6 k 6 p.

Step 2. Quantize the intervals and determine the

grid.

Step 3. Compute the mountain functions M(vi)

for each vi, 1 6 i 6 n.

Step 4. Choose the grid point vi for which M(vi)

is highest as a cluster centroid.

Step 5. Destroy and recompute the mountain
function.

Step 6. If the number of centroids found is equal

to the pre-specified number of clusters,

then stop; otherwise go to Step 4.
2.2. The subtractive method

The clustering performance of the mountain

method strongly depends on the grid resolution,

with finer grids giving better performance. As the

grid resolution is increased, however, the method

becomes computationally expensive. Moreover,

the mountain method becomes computationally

inefficient when applied to high dimensional data
because the number of grid points required in-

creases exponentially with the dimension of data.

Chiu suggested an improved version of the

mountain method, referred to as the subtractive

method, in which each data point is considered

as a potential cluster centroid (Chiu, 1995). Under

this method, the mountain function is calculated
on data points rather than grid points. The com-

putational load of this method presumably still in-

creases with increasing dimension of data, just not

at the same rate for the original mountain method.

The mountain function at a data point xi is de-
fined as

MðxiÞ ¼
Xn
j¼1

e�akxi�xjk2 ð4Þ

where a is a positive constant and kxi � xjk2 is the
square of distance between xi and xj. Using this

mountain function, cluster centroids are selected

in a manner similar to that used in the original

mountain method. Let M�
1 be the maximum value

of the mountain function

M�
1 ¼ Maxi½MðxiÞ	 ð5Þ

and let x�i be the data point whose mountain va-

lue is M�
1; this data point is selected as the first

cluster centroid. The modified mountain function

used to find subsequent cluster centroids is de-

fined as

bMjðxiÞ ¼ bMj�1ðxiÞ �M�
j�1

Xn
j¼1

e
�bkxi�x�j�1

k2 ð6Þ

where x�j�1 is the newly found centroid and b is a

positive constant. The procedure for the subtrac-

tive method is similar to that of the mountain
method except for the interval and the grid being

eliminated.

The mountain and subtractive methods can

both be used either as (1) stand-alone clustering

methods by assigning each data point to a specific

cluster based on the distances between the data

point and the centroids or (2) supporting tools to

estimate the initial cluster centroids for other clus-
tering methods such as the k-means and fuzzy c-

means methods.
3. Kernel-based subtractive clustering method

3.1. Kernel-based approach

The reduction in computational complexity

achieved in going from the grid-based formulation

of the mountain method to the point-based sub-
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tractive clustering method can, in systems with far

fewer data points than grid points, be accompa-

nied by lower accuracy. The present work pro-

poses a way of increasing the accuracy of the

subtractive method by exploiting a kernel function
in calculating the mountain value of each data

point; mapping the data points from input space

to a high dimensional space in which distance is

measured using a kernel function, and each moun-

tain value is calculated. The mountains of the pro-

posed kernel-based method calculated in a high

dimensional space are much more informative

than those of the conventional subtractive method
calculated in the original space; leading to more

accurate selection of the cluster centroids.

A kernel function is a generalization of the dis-

tance metric that measures the distance between

two data points as the data points are mapped into

a high dimensional space in which the data are

more clearly separable (Muller et al., 2001; Giro-

lami, 2002).
Given an unlabeled data set X = {x1, . . . ,xn} in

the p-dimensional space Rp, let U be a non-linear

mapping function from this input space to a high

dimensional feature space H:

U : Rp ! H x 7! UðxÞ ð7Þ
Let us consider the dot product (xi Æ xj), often

referred to as the inner product, which is used as

a similarity measure in a variety of machine learn-

ing methods. By applying the nonlinear mapping

function U, the xi Æ xj in the input space is mapped

to U(xi) Æ U(xj) in the feature space, which is

thought to be a more general similarity measure

(Scholkopf and Smola, 2002).

The key notion in kernel-based learning is that
the mapping function U need not be explicitly

specified; the dot product in the high dimensional

feature space can be calculated through the kernel

function K(xi,xj) in the input space Rp (Scholkopf

and Smola, 2002)

Kðxi; xjÞ ¼ UðxiÞ � UðxjÞ ð8Þ
Consider the following example. For p = 2 and

a mapping function U,

U : R2 ! H ¼ R3 ðxi1; xi2Þ 7! ðx2i1; x2i2;
ffiffiffi
2

p
xi1xi2Þ

ð9Þ
Then the dot product in the feature space H is

calculated as

UðxiÞ � UðxjÞ ¼ ðx2i1; x2i2;
ffiffiffi
2

p
xi1xi2Þ � ðx2j1; x2j2;

ffiffiffi
2

p
xj1xj2Þ

¼ ððxi1; xi2Þ � ðxj1; xj2ÞÞ2

¼ ðxi � xjÞ2 ¼ Kðxi; xjÞ

where K-function is the square of the dot product

in the input space. We see from this example that

use of the kernel function makes it possible to cal-
culate the value of the dot product in the feature

space H without explicitly calculating the mapping

function U.

Three commonly used kernel functions (Schol-

kopf and Smola, 2002) are the polynomial kernel

function,

Kðxi; xjÞ ¼ ðxi � xj þ cÞd ð10Þ
where c P 0, d 2 N; the Gaussian kernel function,

Kðxi; xjÞ ¼ exp �kxi � xjk2

2r2

 !
ð11Þ

where r > 0; and the sigmoidal kernel function

Kðxi; xjÞ ¼ tanhðjðxi � xjÞ þ #Þ ð12Þ
where j > 0 and # < 0.

3.2. Formulation

Given a data point xi 2 Rp (1 6 i 6 n) and a

nonlinear mapping U :Rp ! H, the mountain

function at a data point xi is defined as

MðxiÞ ¼
Xn
j¼1

e�akUðxiÞ�UðxjÞk2 ð13Þ

where a is a positive constant and kU(xi) � U(xj) k2
is the square of distance between U(xi) and U(xj).

Thus a higher value of M(xi) indicates that xi has
more data points xj near to it in the feature space.

The distance in the feature space is calculated

through the kernel in the input space as follows:

kUðxiÞ �UðxjÞk2 ¼ ðUðxiÞ �UðxjÞÞ � ðUðxiÞ �UðxjÞÞ
¼ UðxiÞ �UðxiÞ � 2UðxiÞUðxjÞ
þUðxjÞUðxjÞ

¼ Kðxi; xiÞ � 2Kðxi; xjÞ þ Kðxj; xjÞ
ð14Þ
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Therefore, Eq. (13) can be rewritten as

MðxiÞ ¼
Xn
j¼1

e�aðKðxi ;xiÞ�2Kðxi;xjÞþKðxj;xjÞÞ ð15Þ

The cluster centroid selection procedure is sim-

ilar to that of the subtractive method. After calcu-

lating the mountain values, the data point x�i
whose mountain value is M�

1 ¼ Maxi½MðxiÞ	 is se-

lected as the first cluster centroid. To eliminate

the effects of the previously identified centroids,
the mountain function to find subsequent cent-

roids is modified as follows:

bMj
ðxiÞ ¼ bMj�1

ðxiÞ �M�
j�1

Xn
j¼1

e
�bkUðxiÞ�Uðx�j�1

Þk2 ð16Þ

¼ bMj�1
ðxiÞ

�M�
j�1 �

Xn
j¼1

e
�bðKðxi ;xiÞ�2Kðxi;x�j�1

ÞþKðx�j�1
;x�j�1

ÞÞ

ð17Þ

where x�j�1 is the newly found centroid and b is a

positive constant.

The procedure for the kernel-based subtractive

method is as follows:

Step 1. Given the number of clusters, k, and the
chosen values of a, b, choose a kernel

function K.

Step 2. Compute the mountain function. For

each xi:

MðxiÞ ¼
Xn
j¼1

e�aðKðxi ;xiÞ�2Kðxi;xjÞþKðxj;xjÞÞ ð18Þ

Step 3. Choose the data point xi whose mountain

function is highest as a cluster centroid.

Step 4. Destroy and recompute the mountain

function. For each xi:bMjðxiÞ ¼ bMj�1ðxiÞ �M�
j�1

�
Xn
j¼1

e
�bðKðxi ;xiÞ�2Kðxi;x�j�1

ÞþKðx�j�1
;x�j�1

ÞÞ

ð19Þ

Step 5. If the number of centroids found is equal

to k, then stop; otherwise go to Step 3.
4. Experimental results

To demonstrate the effectiveness of the pro-

posed method, we applied the kernel-based sub-

tractive method and three conventional methods
(the k-means, fuzzy c-means, and subtractive

methods) to a number of widely used data sets

and compared the performance of each method.

The subtractive and proposed methods are used

as stand-alone clustering methods to clearly show

the effects of the cluster centroids selected.

In these experiments, the k-means and fuzzy c-

means methods were run 100 times with the initial
centroids randomly selected from the data set. The

parameters of the k-means and fuzzy c-means

methods were set to a termination criterion

� = 0.001, and weighting exponent m = 2.0. The

parameters of the subtractive and kernel-based

subtractive methods were set to a = 5.4 and

b = 1.5 as suggested by Pal and Chakraborty

(2000). The Gaussian kernel was used. The various
methods were applied to the same five data sets, re-

ferred to as the X30 (Bezdek and Pal, 1998), BEN-

SAID (Bensaid et al., 1996), DUNN (Dunn, 1974),

IRIS (Bezdek et al., 1999), and ELLIPSE data

sets. Figs. 1–4 show scatterplots of the clustering

results of the subtractive and the proposed meth-

ods. Tables 1–5 display the clustering results of

the centroids, the mountain values, and the num-
ber of misclassified data of the subtractive method

and the proposed method for the five data sets.

Table 6 summarizes the results obtained when

the k-means, fuzzy c-means, subtractive, and pro-

posed clustering methods were applied to the five

data sets; for each data set, the highest accuracy

value is marked in bold face.

The clustering results were assessed using
Huang�s accuracy measure (r) (Huang and Ng,

1999):

r ¼
Pk

i¼1ai
n

ð20Þ

where ai is the number of data occurring in both

the i-th cluster and its corresponding true cluster,

and n is the total number of data in the data set.

According to this measure, a higher value of r indi-

cates a better clustering result, with perfect cluster-

ing yielding a value of r = 1.
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Fig. 1. Comparison of the results: (a) data set ‘‘X30’’; (b) clustering using the subtractive method; and (c) clustering using the proposed

method.
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Fig. 2. Comparison of the results: (a) data set ‘‘BENSAID’’; (b) clustering using the subtractive method; and (c) clustering using the

proposed method.
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Fig. 3. Comparison of the results: (a) data set ‘‘DUNN’’; (b) clustering using the subtractive method; and (c) clustering using the

proposed method.
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Fig. 4. Comparison of the results: (a) data set ‘‘ELLIPSE’’; (b) clustering using the subtractive method; and (c) clustering using the

proposed method.
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Table 1

The centroids, their mountain values, and the number of misclassified data and accuracies using the subtractive and proposed methods

for the X30 data set

Methods Centroids Mountain Misclassification Accuracy

Subtractive 5.5 6.0 1.72 0 1.000

2.0 2.0 1.55

12.2 12.3 0.67

Proposed 5.5 6.0 8.69 0 1.000

1.7 2.1 6.42

11.2 11.5 4.62

Table 2

The centroids, their mountain values, and the number of misclassified data and accuracies using the subtractive and proposed methods

for the BENSAID data set

Methods Centroids Mountain Misclassification Accuracy

Subtractive 1.0 48.0 0.0050 7 0.857

1.0 49.0 0.0030

4.0 49.0 0.0004

Proposed 1.0 48.0 2.37 0 1.000

40.0 46.0 0.33

110.0 48.0 0.26

Table 3

The centroids, their mountain values, and the number of misclassified data and accuracies using the subtractive and proposed methods

for the DUNN data set

Methods Centroids Mountain Misclassification Accuracy

Subtractive 13.0 0.0 0.02 15 0.833

10.0 3.0 0.02

Proposed 13.0 0.0 14.54 0 1.000

5.0 0.0 4.50

Table 4

The centroids, their mountain values, and the number of misclassified data and accuracies using the subtractive and proposed methods

for the IRIS data set

Methods Centroids Mountain Misclassification Accuracy

Subtractive 4.90 3.10 1.50 0.10 6.48 71 0.527

5.70 2.90 4.20 1.30 3.40

5.10 3.50 1.40 0.20 3.11

Proposed 5.00 3.40 1.50 0.20 34.13 10 0.933

6.20 2.80 4.80 1.80 30.69

6.00 2.90 4.50 1.50 2.07
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Fig. 1(a) shows the X30 data set (Bezdek and
Pal, 1998), which contains n = 30 data points. This

data set has three compact, well-separated clusters
with 10 points per cluster. Fig. 1(b) and (c) show
the clustering results obtained using the subtrac-

tive and proposed methods respectively. The clus-



Table 5

The centroids, their mountain values, and the number of misclassified data and accuracies using the subtractive and proposed methods

for the ELLIPSE data set

Methods Centroids Mountain Misclassification Accuracy

Subtractive 1.030 �0.008 20.385 89 0.703

0.011 0.021 15.532

1.992 �0.011 11.810

Proposed 0.998 �0.006 3.943 85 0.717

�0.002 �0.002 3.356

1.897 �0.108 2.509

Table 6

Clustering accuracy achieved by each clustering method for the five data sets

Data set K-means Fuzzy c-means Subtractive Proposed

X30 0.838 1.000 1.000 1.000

BENSAID 0.815 0.769 0.857 1.000

DUNN 0.689 0.700 0.833 1.000

IRIS 0.833 0.893 0.527 0.933

ELLIPSE 0.644 0.658 0.703 0.717
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ter centroids are marked in black. Both methods

successfully identified the centroids. Table 1 lists

the selected centroids, mountain values, number

of misclassified data, and accuracies of the two

methods. The subtractive and proposed methods

both achieved perfect accuracy values of

r = 1.000. The k-means and fuzzy c-means meth-

ods gave classification accuracies of r = 0.838 and
r = 1.000 respectively (Table 6).

Fig. 2(a) shows a scatterplot of the BENSAID

data set (Bensaid et al., 1996). This data set com-

prises 49 data points in two dimensional space,

and consists of three clusters. Fig. 2(b) and (c) show

the selected centroids and clustering results ob-

tained using the subtractive and proposed methods

respectively. The subtractive method did not
clearly identify the cluster centroids (Fig. 2(b)),

whereas the proposed method successfully selected

the centroids (Fig. 2(c)). This is evident in the accu-

racy values, which were r = 1.000 for the proposed

method compared to r = 0.857 for the subtractive

method. Thus the proposed method was 14.3%

more accurate than the subtractive method (Table

2). The k-means and fuzzy c-means methods gave
accuracies of r = 0.815 and r = 0.769 respectively

(Table 6).

Fig. 3(a) shows the third data set, Dunn (1974),

which consists of 90 data points distributed in two
clusters. The subtractive method failed to give

correct clustering results (Fig. 3(b)); the centroid

marked as a black rectangle was incorrectly cho-

sen, leading to the misclassification of the top-left

data of the right-side cluster. In contrast, the pro-

posed method successfully identified the centroids

of the two clusters (Fig. 3(c)). The accuracies of

the subtractive and proposed methods were
r = 0.833 and r = 1.000 respectively (Table 3),

indicating that use of the kernel-based approach

enhanced the accuracy by 16.7%. The k-means

and fuzzy c-means methods gave lower accuracies

of r = 0.689 and r = 0.700 respectively (Table 6).

The tests on the BENSAID and DUNN sets dem-

onstrate that the proposed method more clearly

classified these systems with unequal-sized clusters
compared to the other methods.

The fourth data set, the IRIS (Bezdek et al.,

1999), has n = 150 data points in a four-dimen-

sional space that are grouped in three physical clus-

ters, two of which are overlapped. As indicated in

Table 4, the subtractive method showed a low level

of accuracy (r = 0.527) for this data set, with 71 data

misclassified. In contrast, the proposed method
gave an accuracy value of r = 0.933, and misclassi-

fied only 10 data points. In this case, the proposed

approach was 47.3% more accurate than the sub-

tractive method. The k-means and fuzzy c-means
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methods showed the classification accuracies of

r = 0.833 and r = 0.893 respectively (Table 6).

To test the performance of the kernel-based

method for non-spherical clusters, we applied

the four clustering methods to the ELLIPSE data
set, shown in Fig. 4(a), which contains 300 data

points. The optimal number of clusters for this

data set is three. Both methods identified three

centroids, one from each cluster (Fig. 4(b) and

(c)). In Table 5, the subtractive method gave an

accuracy of r = 0.703, and the proposed method

was 1.4% more accurate, with a clustering accu-

racy of r = 0.717. The k-means and fuzzy c-means
methods showed similar accuracies of r = 0.644

and r = 0.658 respectively (Table 6). Although

the proposed method provided a better clustering

result than the other methods, its accuracy for

this data set was lower than the four other data

sets considered. This indicates that the proposed

approach is limited in its ability to classify non-

spherical clusters.
In the test calculations, the proposed kernel-

based approach gave markedly better clustering

performance than the other three methods consid-

ered, highlighting the effectiveness and potential of

the proposed method.
5. Conclusions

The conventional subtractive method is capable

of efficiently clustering data; however, its precision

and ability to correctly classify data are compro-

mised by its use of data points as the cluster cent-

roids. To address these shortcomings of the

subtractive method, we developed a new kernel-

based subtractive method in which a kernel func-
tion is used to calculate the mountains. A kernel

function can implicitly map the input data to a high

dimensional space in which data classification is

easier. Compared to the conventional subtractive

method, the kernel-induced mountain computa-

tion selects more desirable cluster centroids, there-

by increasing the clustering accuracy. To test the

performance of the proposed clustering method,
it was applied to various data sets. The proposed

method showed good clustering performance for

most data sets, with the exception of non-spherical
clusters. In future work, we plan to improve the

mountain function to detect non-spherical clusters

by considering the covariance information of clus-

ters or employing the Gustafson–Kessel (GK) clus-

tering algorithm (Bezdek et al., 1999).
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