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Abstract

In this paper the conventional fuzzy k-modes algorithm for clustering categorical data is extended by representing

the clusters of categorical data with fuzzy centroids instead of the hard-type centroids used in the original algorithm.

Use of fuzzy centroids makes it possible to fully exploit the power of fuzzy sets in representing the uncertainty in the

classification of categorical data. To test the proposed approach, the proposed algorithm and two conventional

algorithms (the k-modes and fuzzy k-modes algorithms) were used to cluster three categorical data sets. The proposed

method was found to give markedly better clustering results.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Fuzzy clustering; k-modes algorithm; Fuzzy k-modes algorithm; Categorical data; Fuzzy centroid
1. Introduction

Clustering has emerged as a popular technique

for pattern recognition, image processing, and,
most recently, data mining. Clustering algorithms

are increasingly required to deal with large scale

data sets containing categorical data as well as

numeric data, particularly in the context of data

mining. A variety of clustering algorithms have

been proposed for clustering categorical data, for

example the hierarchical method using Gower’s
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similarity coefficient (Gower, 1971; Gowda and

Diday, 1991; Kaufman and Rousseeuw, 1990;

Michalski and Stepp, 1983; Woodbury and Clive,

1974). However, as Huang and Ng pointed out
(Huang and Ng, 1999), these algorithms become

prohibitively inefficient when applied to large data

sets containing only categorical data.

One method that has proved particularly effi-

cient is the k-means-type algorithm (Jain and

Dubes, 1998; Jain et al., 1999). Huang recently

developed the k-modes algorithm by extending the

standard k-means algorithm with a simple match-
ing dissimilarity measure for categorical data, and

a frequency-based method to update centroids in

the clustering (Huang, 1998). This extended

method is not constrained by the numeral-only
ed.
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limitation of the k-means algorithm, and has been

shown to give efficient clustering performance in

real-world databases. Furthermore, Huang and

Ng introduced the fuzzy k-modes algorithm, a

generalized version of the k-modes algorithm

(Huang and Ng, 1999). Fuzzy set theory and fuzzy
logic are suited to deal with uncertainties, and

fuzzy clustering models have proved a particularly

promising solution in a variety of areas (Zadeh,

1972; Dubois and Prade, 1980; Bezdek et al.,

1999). The fuzzy k-modes algorithm generates the

fuzzy partition matrix from categorical data with

the framework of the fuzzy k-means-type algo-

rithm (Bezdek, 1981; Bezdek et al., 1999), and
improves on the k-modes algorithm by assigning

confidence degrees to data in different clusters.

In most fuzzy versions of clustering algorithms,

the assigned memberships of data to a cluster are

fuzzy, but the centroid itself is not fuzzy. However,

the use of hard centroids can give rise to artifacts.

For example, although the fuzzy k-modes algo-

rithm efficiently handles categorical data sets, it
uses a hard centroid representation for categorical

data in a cluster. This use of hard rejection of data

can lead to misclassification in the region of doubt.

To address the problems caused by using hard

centroids, in the present study we developed a

fuzzy clustering algorithm with fuzzy centroids for

clustering categorical data. The use of fuzzy cent-

roids allows the user to fully exploit the power of
fuzzy sets in representing uncertainty and impre-

cision. The proposed approach preserves the

uncertainty inherent in data sets for longer before

decisions are made, and is therefore less prone to

falling into local optima in comparison to other

clustering algorithms.
2. Fuzzy k-modes algorithm

Let X ¼ fX1;X2; . . . ;Xng be a set of n categori-

cal data. Let data Xj (16 j6 n) be defined by a set

of categorical attributes A1;A2; . . . ;Ap. Each Al

describes a domain of values denoted by

DOMðAlÞ ¼ fað1Þl ; að2Þl ; . . . ; aðnlÞl g where nl is the

number of category values of attribute Al for
16 l6 p. A domain DOMðAlÞ is defined as cate-

gorical if it is finite and unordered. Let Xj be de-
noted by ½xj;1; xj;2; . . . ; xj;p�. Thus Xj can be logically

represented as a conjunction of attribute-value

pairs ½A1 ¼ xj;1� ^ ½A2 ¼ xj;2� ^ � � � ^ ½Ap ¼ xj;p�,
where xj;l 2 DOMðAlÞ for 16 l6 p.

The objective of the fuzzy k-modes algorithm is

to cluster the data X into k clusters by minimizing
the function (Huang and Ng, 1999)

JmðU ; V : X Þ ¼
Xk
i¼1

Xn
j¼1
ðlijÞ

mdcðVi ;XjÞ ð1Þ

subject to 06 lij 6 1; 16 i6 k; 16 j6 n ð2ÞXk
i¼1

lij ¼ 1; 16 j6 n ð3Þ

0 <
Xn
j¼1

lij < n; 16 i6 k ð4Þ

where lij is the membership degree of data Xj to

the ith cluster, and is additionally an element of a

ðk � nÞ pattern matrix U ¼ ½lij�. V ¼ ðV1; V2; . . . ;
VkÞ consists of the centroids of the fuzzy clusters.

Centroid Vi is represented as ½vi;1; vi;2; . . . ; vi;p�. The
parameter m controls the fuzziness of membership

of each datum.

To cluster categorical data, the fuzzy k-modes

algorithm extends the hard k-modes algorithm

based on the fuzzy c-means-type procedure. First,

the method for measuring the distance between a

cluster centroid and a datum is proposed, along

with the method for updating the cluster centroid
at each iteration.

The distance measure dcðVi ;XjÞ between a cen-

troid Vi and a categorical data point Xj is defined

as

dcðVi ;XjÞ ¼
Xp
l¼1

dðvi;l; xj;lÞ ð5Þ

where

dðvi;l; xj;lÞ ¼
0; vi;l ¼ xj;l
1; vi;l 6¼ xj;l

�
ð6Þ

The measure dc satisfies a metric space on the set of

categorical objects, and is also a kind of general-

ized Hamming distance (Kohonen, 1980).

The cluster centroids are updated as follows.

When the cluster centroid Vi ¼ ½vi;1; vi;2; . . . ; vi;p� is
given, each vi;l 2 V for 16 l6 p is updated as
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vi;l ¼ aðrÞl 2 DOMðAlÞ ð7Þ

whereX
xj;l¼a

ðrÞ
l

lm
ij P

X
xj;l¼a

ðtÞ
l

lm
ij ; 16 t6 nl ð8Þ

The category of attribute Al of the cluster centroid
Vi is given by the category value that achieves the

highest value of the summation of lil (the degrees

of membership to the ith cluster) over all catego-

ries.
3. Fuzzy clustering with fuzzy centroids

3.1. Intuition and approach

In the present work, we introduce the notion of

fuzzy centroids into the fuzzy clustering algorithm.

This approach makes it possible to exploit the

power of fuzzy sets when representing the cluster

centroid. In the fuzzy k-modes algorithm, the

centroids of the categorical attributes are deter-
mined through hard decisions based on the mem-

bership degrees. Thus, this representation does not

keep information on the current centroids for the

next iteration. For instance, consider the following

example.

Example 1. Let DOMðAlÞ ¼ fhigh; lowg and let

us consider three data X1, X2, and X3 whose degrees
of membership to the ith cluster are li1 ¼ 0:70,
li2 ¼ 0:80, and li3 ¼ 0:15, respectively.
X1 ¼ ½x1;1; . . . ; x1;l�1; \high"; x1;lþ1; . . . ; x1;p�

X2 ¼ ½x2;1; . . . ; x2;l�1; \low"; x2;lþ1; . . . ; x2;p�

X3 ¼ ½x3;1; . . . ; x3;l�1; \high"; x3;lþ1; . . . ; x3;p�
Consider the lth attribute, vi;l, of the cluster cen-
troid V ¼ ½vi;1; . . . ; vi;l; . . . ; vi;p�. By Eqs. (7) and (8),

vi;l is assigned the value ‘‘high’’ or ‘‘low’’ depend-

ing on the calculations of
P

xj;l¼high l
m
ij ¼ 0:70mþ

0:15m and
P

xj;l¼low l
m
ij ¼ 0:80m. For instance, vi;l is

assigned ‘‘high’’ for m ¼ 1:0, whereas vi;l is as-

signed ‘‘low’’ for m ¼ 2:0. According to the deci-

sion, one of the two is rejected and, despite its
potential, is not concerned with the computations

of the membership degrees (lij) of data in the next

iteration. This can lead to the misclassifications of

data, and therefore drive the algorithm to fall into

a local minimum. To prevent this, we herein pro-
pose that a soft decision be made when selecting

the cluster centroids for categorical attributes,

thereby preserving the uncertainty for long as

possible before actual decisions are made. To

achieve this objective, we introduce the concept of

a fuzzy centroid.

In a hard centroid, each attribute of the cen-

troid has a single hard category value. In contrast,
each attribute of a fuzzy centroid has a fuzzy

category value to describe the information dis-

tributed in the cluster. For DOMðAlÞ ¼ fað1Þl ;
að2Þl ; . . . ; aðnlÞl g, the proposed fuzzy centroid, de-

noted by eV , is defined aseV ¼ ½~v1; . . . ;~vl; . . . ;~vp� ð9Þ
where

~vl ¼ að1Þl =xð1Þl þ að2Þl =xð2Þl þ � � � þ aðnlÞl =xðnlÞl ð10Þ
subject to 06xðtÞl 6 1; 16 t6 nl ð11ÞXnl

t¼1
xðtÞl ¼ 1; 16 l6 p ð12Þ

Each attribute ~vl 2 eV is a fuzzy category value
represented as a fuzzy set fðaðtÞl ;xðtÞl Þg, which is a

convenient notation for a fuzzy set proposed by

Zadeh (1972), for 16 t6 nl. This is determined by

the category distribution of attribute Al for data

belonging to the cluster. xðtÞl indicates the confi-

dence degree with which aðtÞl contributes to ~vl.

3.2. Distance measure and centroid’s update

Let eV and X be a fuzzy centroid and a data

point represented as ½~v1;~v2; . . . ;~vp� and ½x1; x2; . . . ;
xp�, respectively. The distance measure between eV
and X is defined as

dðeV ;X Þ ¼
Xp
l¼1

dð~vl; xlÞ ð13Þ

where

dð~vl; xlÞ ¼
Xnl
t¼1

sðaðtÞl ; xlÞ ð14Þ
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and

sðaðtÞl ; xlÞ ¼
0; aðtÞl ¼ xl
xðtÞl ; aðtÞl 6¼ xl

(
ð15Þ

The function d is obtained by summing the dis-

similarity between aðtÞl 2 DOMðAlÞ and xl. The

function s is assigned a value of 0.0 when two

values are equal; otherwise it is assigned a value of

1.0 multiplied by its confidence degree.
Let us consider the method for updating fuzzy

centroids eVi ¼ ½~vi;1; . . . ;~vi;l; . . . ;~vi;p� when the par-

tition matrix U ¼ ½uij� is determined based on the

distance measure in Eq. (13). The attribute ~vl,
shown in Eq. (10), is then updated by determining

xðtÞl for 16 t6 nl as follows.

xðtÞl ¼
Xn
j¼1

cðxj;lÞ ð16Þ

where

cðxj;lÞ ¼
lm
ij ; aðtÞl ¼ xj;l

0; aðtÞl 6¼ xj;l

(
ð17Þ

Each ~vl 2 eV contains the distributions of category

values of DOMðAlÞ. It is easy to verify that the

conditions in Eqs. (11) and (12) are satisfied. Let
us consider the Example 1 again. For m ¼ 1:0, the
attribute ~vi;l 2 eVi is given by

~vi;l ¼ \high"=0:85þ \low"=0:80 ð18Þ
~vl stores the category values and their contribu-

tions to the cluster, and is updated by the xðtÞl at
each iteration before an actual decision is required.

3.3. The proposed clustering algorithm for categor-

ical data

To minimize the objective function with fuzzy

centroids,

JmðU ; eV : X Þ ¼
Xk
i¼1

Xn
j¼1
ðlijÞ

m
dðeVi ;XjÞ ð19Þ

the proposed algorithm uses the fuzzy c-means-

type paradigm to cluster categorical data.

Step 1. Given the number of clusters, k, and a cho-

sen value of m, choose initial centroids
eV ð0Þðt ¼ 0Þ. Each ~vi;l 2 eVi is assigned ran-

dom membership values for xðtÞl .

Step 2. Compute the ith fuzzy cluster for i ¼ 1;
2; . . . ; k. For each xj:

lijðtÞ ¼
Xk
z¼1

dðeVi ;XjÞ
dðeVz;XjÞ

 ! 1
m�1

0@ 1A�1 ð20Þ

Step 3. Update the fuzzy cluster centroid eViðt þ 1Þ ¼
½~vi;1; . . . ;~vi;l; . . . ;~vi;p� for i ¼ 1; 2; . . . ; k. For

each ~vi;l ¼ fðaðtÞl ;xðtÞl Þg for 16 l6 p

xðtÞl ¼
Xn
j¼1

cðxj;lÞ; 16 t6 nl ð21Þ

where

cðxj;lÞ ¼
lm
ij ; aðtÞl ¼ xj;l

0; aðtÞl 6¼ xj;l

(
ð22Þ

Step 4. If there is no improvement in Jm, then

stop; otherwise, set t t þ 1 and go to

Step 2.

Let us consider the time and space complexities

of the proposed algorithm. The time complexity

required mainly depends on the updates of the
fuzzy centroids and partition matrix in an each

iteration. The computational costs of updating the

fuzzy centroids and partition matrix are OðkpnÞ
and OðkNpnÞ, respectively, where k is the number

of clusters, p is the number of attributes,

Nð¼ maxðnlÞÞ is the maximum number of catego-

ries for 16 l6 p, and n is the number of data.

Therefore, the overall time complexity is
OðkpnðN þ 1ÞsÞ, where s is the number of itera-

tions required for the algorithm to converge. The

time complexity of the fuzzy k-modes algorithm is

Oðknðp þMÞsÞ, where Mð¼
Pp

l¼1 nlÞ is the total

number of categories of all attributes (Huang and

Ng, 1999). Typically, k and s are fixed in advance;

thus the two algorithms have linear time com-

plexities with respect to the size of the data and its
attributes. When n� k; p; s, these are faster than

the hierarchical clustering algorithms whose time

complexity is generally Oðn2Þ. For space com-

plexity, it requires OðpðkN þ nÞÞ to store the fuzzy

centroids V and the set of data X , and it requires

an additional OðknÞ to store the pattern matrix U .
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Thus, the overall space complexity of the algo-

rithm is OðpðkN þ nÞ þ knÞ.
4. Experimental results

To test the effectiveness with which the pro-

posed algorithm clusters categorical data, we

applied the proposed algorithm and two conven-

tional methods (the k-modes algorithm and the

fuzzy k-modes algorithm) to real categorical data

sets and compared the performances of the algo-

rithms. The initial centroids of the k-modes and

fuzzy k-modes algorithms were k distinct data
randomly selected from the data set. Three data

sets were used to evaluate the performance of each

method, specifically, the SOYBEAN (Huang and

Ng, 1999), CREDIT (Quilan and Quilan, 1992),

and ZOO (Blake and Merz, 1989) data sets. The

clustering results were assessed using Huang’s

accuracy measure (r) (Huang and Ng, 1999).

r ¼
Pk

i¼1 ai
n

ð23Þ

where ai is the number of data occurring in both

the ith cluster and its corresponding true class, and

n is the number of data in the data set. According

to this measure, a higher value of r indicates a

better clustering result, with perfect clustering

yielding a value of r ¼ 1:0.

4.1. Clustering performance

The first data set, referred to as the SOYBEAN

data set (Huang and Ng, 1999), contains 47 data

points on diseases in soybeans. Each data point

has 35 categorical attributes and is classified as one

of the following four diseases: Diaporthe Stem

Canker, Charcoal Rot, Rhizoctonia Root Rot,

and Phytophthora Rot. Phytophthora Rot has 17
data, and the three other diseases have 10 data

each. The three clustering algorithms were used to

cluster this data set into four clusters (k ¼ 4). Each

algorithms was run 100 times. Fig. 1 shows the

distributions of the number of runs with respect to

the number of data correctly classified by each

algorithm. It is evident from this figure that the

proposed algorithm, which successfully classified
the data set in 87 of the 100 runs, gives markedly

better clustering performance in comparison to the

k-modes and fuzzy k-modes algorithms. Table 1

lists the average accuracy of clustering achieved

by each algorithm over 100 runs for varying

m 2 ½1:1; 2:0�. In agreement with the work of Hu-
ang and Ng (1999), the fuzzy k-modes algorithm

provides the best result for a weighting exponent

of m ¼ 1:1 (r ¼ 0:772), and is more accurate than

the k-modes algorithm (r ¼ 0:685). We see that the

execution time of the fuzzy k-modes algorithm

(0.04 s) was almost the same as that of the pro-

posed algorithm (0.06 s), but the proposed algo-

rithm gave an accuracy of r ¼ 0:972 at m ¼ 1:8,
making it 20% more accurate than the fuzzy k-
modes algorithm.

Table 2 summarizes the clustering accuracies of

each algorithm for the CREDIT and ZOO data

sets. As for the SOYBEAN data set, each algo-

rithm was run 100 times with varying

m 2 ½1:1; 2:0�. Distribution histograms similar to

Fig. 1 are not presented for these data sets due to
space considerations. The CREDIT data set con-

tains 202 applicants data for credit-approval. Each

application is described by nine attributes and

classified as approved or rejected (k ¼ 2). Over the

100 runs, the proposed algorithm was most accu-

rate at m ¼ 1:8, yielding an accuracy of r ¼ 0:800.
The k-modes and fuzzy k-modes algorithms

showed the lower classification accuracies of
r ¼ 0:658 and r ¼ 0:744 (at m ¼ 1:1) respectively.
In this case, there was 5:6% increase of accuracy by

the proposed algorithm. The third data set, the

ZOO set, contains 101 data, where each data

represents an animal with 18 categorical attributes.

Each animal data point is classified into seven

classes (k ¼ 7) according to its type (e.g., mammal

or bird). Over 100 runs, the k-modes and fuzzy k-
modes algorithms gave accuracies of r ¼ 0:602 and
r ¼ 0:642 (m ¼ 1:1) respectively. In contrast, the

proposed algorithm gave the superior accuracy of

r ¼ 0:751 at m ¼ 1:8. Thus, in this case, the pro-

posed algorithm was 10:9% more accurate than the

fuzzy k-modes algorithm.

The fourth data set, the ADULT set, contains

32,561 data, where each data represents a personal
income with eight categorical attributes (k ¼ 2)

(Blake and Merz, 1989). This set was employed to



Fig. 1. Distributions of the number of runs with respect to the number of correctly classified records in each run. (a) The k-modes

algorithm, (b) the fuzzy k-modes algorithm (m ¼ 1:1), (c) the proposed algorithm (m ¼ 1:8).
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Table 1

Average clustering accuracy (r) achieved by three clustering

methods for the SOYBEAN data set

m k-modes Fuzzy k-modes Proposed

1.1 0.772 0.893

1.2 0.766 0.920

1.3 0.733 0.946

1.4 0.740 0.967

1.5 0.713 0.972

1.6 0.685 0.693 0.955

1.7 0.694 0.964

1.8 0.703 0.972

1.9 0.703 0.958

2.0 0.690 0.900

Table 2

Average clustering accuracy (r) achieved by three clustering

methods for the CREDIT and ZOO data sets

Data set k-modes Fuzzy k-modes Proposed

CREDIT 0.658 0.744 0.800

ZOO 0.602 0.642 0.751
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see the differences in the computation time be-
tween the fuzzy k-modes and the proposed algo-

rithm for clustering large data set. Both algorithms

showed almost the same accuracy 75%. We see

that the execution time of the proposed algorithm

(4.57 s) was faster than that of the fuzzy k-modes

algorithm (7.26 s). This is due to the fewer itera-

tions of the proposed algorithm to converge than

the fuzzy k-modes algorithm.
Fig. 2. Scalability to the num
To test the scalability of the proposed algorithm

for clustering very large scale data sets, we applied

the proposed algorithm to the COVERTYPE data

set (Blake and Merz, 1989). This set contains

300,000 data where each data point is composed of

44 categorical attributes. The scalability was tested
by increasing the number of data for a fixed

number of clusters (k ¼ 5). Fig. 2 shows the exe-

cution times of clustering the number of data in-

creased into five clusters. We see that the proposed

algorithm shows a linear increase in execution time

as the number of data increases.

From the test calculations, the k-modes and

fuzzy k-modes algorithms showed similar perfor-
mances for all data sets and, in comparison to

these two algorithms, the proposed algorithm gave

markedly better clustering performance. Thus, the

test results highlight the effectiveness and potential

of the proposed method for clustering categorical

data.

4.2. Classification of boundary data

One of the most difficult problem in clustering is

the classification of boundary data, that is, data

located in the outer block of each cluster. Such

data are more likely to be either misclassified to an

incorrect cluster or assigned the same distance

values to two neighboring clusters (Huang and Ng,

1999). To investigate the clustering of boundary
data by the three algorithms considered above, we
ber of data increased.



Table 3

The distance measure between misclassified data and cluster centroids, and the class no. of the assigned cluster and true cluster

Methods Data (Xj) Distance dðVi ;XjÞ Cluster no.

assigned

True class

V1 V2 V3 V4

k-modes X3ð�Þ 6 15 4 12 3 1

X23ð�Þ 10 16 12 7 4 3

X25ð�Þ 11 16 9 7 4 3

X29ð�Þ 13 15 12 9 4 3

Fuzzy k-modes X3 6 15 6 12 1 1

X23ð�Þ 10 16 11 10 1 3

X25 11 16 9 9 3 3

X29ð�Þ 10 17 11 7 4 3

Proposed X3 6.86 12.94 11.43 11.43 1 1

X23 10.70 15.27 8.32 8.36 3 3

X25 9.99 14.34 7.64 7.67 3 3

X29 11.31 15.25 10.13 10.17 3 3

Here misclassified data are denoted by (�).
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examined four boundary data obtained from the

clustering results of the SOYBEAN data set. The

three algorithms were run with the same initial
centroids. Table 3 shows the clustering results for

the four data by the three algorithms. In this table,

the distances between the data and centroids are

listed, along with the differences between the

cluster assigned by each algorithm and the true

class. Misclassified data are denoted by (�).
The k-modes algorithm misclassified all four

boundary data, X3, X23, X25, and X29. Two of these
misclassifications were corrected by the fuzzy k-
modes algorithm. However, as pointed out by

Huang and Ng (1999), the fuzzy k-modes algo-

rithm may correctly classify boundary data simply

by chance. This is observed in the present case,

where X3 was correctly classified only because it

was assigned the same distances from the first and

the third clusters, and was arbitrarily assigned to
the first cluster (Huang and Ng, 1999). In addition,

X25 was correctly assigned only after a similar

arbitrary process. Furthermore, X23 and X29 were

completely misclassified. In contrast, the proposed

algorithm correctly classified all four data. From

this test, we see that the boundary data, which

conventional algorithms tend to misclassify or

assign the same distances from two or more clus-
ters, were correctly classified by the proposed

algorithm. The success of the proposed algorithm

stems from the fact that the distance measure be-
tween data and fuzzy centroids is more precise and

therefore effective than that of the fuzzy k-modes

algorithm.
5. Conclusions

The conventional fuzzy k-modes algorithm is

capable of efficiently clustering categorical data;

however, its use of hard centroids for categorical

attributes and a simple distance measure compro-
mise its precision and its ability to correctly classify

boundary data. To address these shortcomings of

the fuzzy k-modes algorithm, we developed a new

fuzzy clustering algorithm that uses fuzzy centroids

for clustering categorical data. Fuzzy centroids are

a set of fuzzy values that contain category values

and their confidence degrees for each attribute. In

the formulation of the extended algorithm, the
distance measure between data and fuzzy centroids

was defined and the method for updating fuzzy

centroids was presented. The proposed algorithm

fully exploits the power of fuzzy sets in classifying

vague data in a region of doubt such as boundary

data. The superiority of the proposed algorithm

over the fuzzy k-modes algorithm was clearly

demonstrated through several experiments.
Besides the issues mentioned in the present

work, we should tackle additional two issues in

practice; (1) choosing the number of clusters and
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(2) defining the categorical attributes. In this paper

we assumed that the number of clusters is fixed and

the categorical attributes are pre-defined by ex-

perts. Defining categorical attribute is an difficult

and important task in cluster analysis. The attri-

butes might be nominal, ordinal, or an interval
scale. Different definitions of the attributes might

lead to undesirable clustering results. As a future

work, we would like to study this issue further.
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