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Fuzzy Branching Temporal Logic

Seong-ick Moon, Kwang H. Lee, and Doheon Lee

Abstract—Intelligent systems require a systematic way to rep-
resent and handle temporal information containing uncertainty.
In particular, a logical framework is needed that can represent
uncertain temporal information and its relationships with logical
formulae. Fuzzy linear temporal logic (FLTL), a generalization of
propositional linear temporal logic (PLTL) with fuzzy temporal
events and fuzzy temporal states defined on a linear time model,
was previously proposed for this purpose. However, many systems
are best represented by branching time models in which each
state can have more than one possible future path. In this paper,
fuzzy branching temporal logic (FBTL) is proposed to address
this problem. FBTL adopts and generalizes concurrent tree logic
(CTL*), which is a classical branching temporal logic. The tem-
poral model of FBTL is capable of representing fuzzy temporal
events and fuzzy temporal states, and the order relation among
them is represented as a directed graph. The utility of FBTL is
demonstrated using a fuzzy job shop scheduling problem as an
example.

Index Terms—Branching temporal logic, CTL*, fuzzy logic,
temporal logic.

I. INTRODUCTION

NTELLIGENT systems should be able to represent and

handle temporal information. They must be able to rep-
resent the times at which activities take place and the causal
relationships among those activities. However, like other kinds
of information, temporal information can have a degree of
uncertainty, creating the need for a framework that can repre-
sent uncertain time information and the relationships among
that information. Furthermore, the logic underlying those
relationships should be represented with possible inference
mechanisms. If this need is to be satisfied, we must be able
to represent temporal information primitives and their logical
binding in a well-defined manner.

The time model for a system can be a linear model or a
branching model. In linear models, the order of the events and
states is already known, but the event times are unknown. In
branching models, the order of the events and states, as well as
the event times, are only partially known. The branched nature
of these models means that a given current state may have sev-
eral possible futures. Moreover, logically identical events may
occur in several different system states, and there are an infi-
nite number of possible execution paths. Previously, we pro-
posed a formalism referred to as fuzzy linear temporal logic
(FLTL) for modeling systems with linear time [1]. This logic
subsumes propositional linear temporal logic (PLTL) [2], and
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is capable of representing fuzzy events and states. However,
FLTL is only suitable for modeling systems with linear time and
cannot represent concurrent and/or parallel systems, which re-
quire a branching time model [3].

Here we propose a temporal model and logic for representing
systems with branching time and uncertain temporal informa-
tion. In the proposed formalism, the uncertainty in the logical in-
formation is handled using fuzzy logic, and the uncertainty in the
temporal information is represented with fuzzy temporal prim-
itives. For temporal information without uncertainty, a time in-
stant is the natural choice for the temporal primitive. However,
three distinct types of temporal primitive have been previously
proposed for representing uncertain temporal information: a time
interval [4], an interval with possibility measures [5], and a fuzzy
representation of the time instant [6]. In the present work we
chose a fuzzy representation of the time instant as the temporal
primitive, as we did previously in FLTL [1]. This primitive is used
to define fuzzy events and fuzzy states, which are then used to ex-
tend and generalize the temporal model of concurrent tree logic*
(CTL*). The resulting logic, referred to as fuzzy branching tem-
poral logic (FBTL), can describe a branching temporal model
with uncertain temporal and logical information.

This paper is organized as follows. In Section II, we give a
summary of related studies. Section III presents a description of
FLTL to assist in the understanding of FBTL, and it is demon-
strated that FLTL subsumes PLTL. FBTL is then described in
Section IV; it is shown that FBTL subsumes CTL*. Finally,
in Section V, FBTL is applied to a fuzzy job shop scheduling
problem as an example of the proposed method.

II. RELATED WORKS

To manage uncertain temporal information, we must be able
both to represent temporal information primitives in a suitable
manner and to represent the relationships among them. Various
definitions of the temporal primitive have been employed pre-
viously for systems with uncertain temporal information. For
example, Allen used an interval representation [4], Dutta added
fuzzy membership values to interval calculus [5], and Dubois
used generic fuzzy numbers [6]. Among these approaches, the
interval representation of Allen is the simplest method, and the
interval algebra proposed by Dutta also represents the relation-
ships among intervals. However, the interval representation is
hampered by difficulties in the determination of the member-
ship of the border time point of two adjoining intervals, a short-
coming known as the Divided Instant Problem [7]. Although
Dutta incorporated fuzzy membership to improve uncertainty
management, his method still suffers from the divided instant
problem.

The fuzzy instant representation of Dubois uses fuzzy
numbers and fuzzy intervals to represent temporal information.
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Since fuzzy arithmetic can be used with fuzzy numbers,
temporal primitives represented as fuzzy numbers can be
manipulated with considerable flexibility and power. Fuzzy
numbers have been used as the temporal primitive in several
previous studies involving uncertain temporal information
has been used in several studies [8]-[10]. We adopted this
representation in the present work and used it to represent
events and related states of the fuzzy temporal model.

The relationships among temporal entities have been repre-
sented in numerous ways. When the relationships among tem-
poral entities are only partially known, it is necessary to find one
or more feasible relations between every pair of entities. Algo-
rithms that model the relationships among temporal entities can
be applied in various contexts, including natural language pro-
cessing, planning and knowledge based systems. Time Map [11]
is a database of uncertain temporal information developed by
Dean and McDermott. They used intervals to represent uncer-
tain temporal information and provided an algorithm to manage
and resolve conflicts among the information. Time Map is a net-
work with nodes representing uncertain time points, which can
be a certain time point or an interval. The relationship between
two time points is represented by the time distance, which is
also uncertain. Dean and McDermott used a LISP-like language
to describe the reasoning system. This system, which is an ex-
tension of the classical predicate calculus system, handles tem-
poral reasoning for Time Map, such as the resolution of conflicts
with new temporal information and answering queries for tem-
poral information. The temporal constraint satisfaction problem
(TCSP) was explored by Dechter ef al. [12]. In this problem, re-
lationships among time intervals are represented by a temporal
constraint network (TCN). The goal of TCSP is the sequence of
the intervals which most satisfies the relationships represented
by TCN. Decther et al. showed that a network with at most one
interval for each edge can be solved in polynomial time, while
the more general case is NP-hard. Beek proposed efficient solu-
tions for resolving relationships among time points and intervals
[13]. He improved on previously developed algorithms through
the use of point algebra and a subset of the interval algebra.

Vila and Godo proposed the fuzzy temporal constraint
network (FTCN) [14]. FTCN is able to express precise or
imprecise temporal information with fuzzy temporal entities.
FTCN also provides a reasoning mechanism that is capable
of checking its consistency and answering temporal queries.
Barro et al. proposed the fuzzy temporal constraint satisfaction
network (FTCSN), which is able to resolve relationships
among fuzzy temporal entities [8]. The entities used by Barro
et al. are similar to those proposed by Dubois, and FTCSN is
able to resolve incomplete knowledge about the relationships
among fuzzy temporal entities. This work was extended again
by Viedma et al. to give fuzzy temporal constraint logic,
a formalism that can represent and resolve fuzzy temporal
constraints [15]. Chen proposed the fuzzy timed causal-like net
(FTCLN), which can describe causal relationships among fuzzy
temporal entities [9]. He extended interval algebra to uncertain
temporal entities and provided an algorithm to evaluate each
FTCLN node.

Since the introduction of temporal logic in 1977 by Pnueli
[16], it has come to be widely used to specify the dynamic be-
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havior of computer programs and to describe their properties.
In the area of Artificial Intelligence, three kinds of temporal
logic frameworks have been used [7]. The simplest one is tem-
poral arguments (TA) [17]. This is a first-order logic with tem-
poral information parameters in functions and predicates. How-
ever, because TA does not give any special status to temporal
information, it is hard to recognize the well-formedness of tem-
poral formulae within this logic framework. In addition, the ex-
pressive power of TA is relatively weak [7]. The second type
of temporal logic framework is called reified logic [18]. This
logic encapsulates nontemporal formulae with temporal nota-
tions and quantifications. Reified logic can be efficiently applied
to theorem provers for first-order logic. Additionally it can ex-
press temporal knowledge such as “effects cannot precede their
causes,” which cannot be easily represented using TA. The third
type of temporal logic framework is modal temporal logic [2].
Classic modal logic has long been used in the description of
computer programs and their properties. Although this logic has
not been widely used in intelligent systems on account of its
complexity, it has rich expressive power, and its temporal model
can explicitly express the temporal states of a system. Examples
of formalisms based on modal temporal logic include proposi-
tional linear temporal logic (PLTL) and computational tree logic
(CTL*) [2]. These logics can represent sequences of states and
their associated propositions.

An additional factor that must be considered is that, even
though a software system may be inherently crisp and discrete,
modeling a real-time system can introduce uncertainty arising
from a lack of sufficient knowledge of the system [19]. This
problem can be particularly acute during the early development
stages. Barringer suggested that modeling a program abstractly
can only be done on a continuous time domain [20]. Several
studies have incorporated fuzzy logic into modal temporal logic.
Kim proposed a temporal logic on a linear time domain con-
sisting of a set of adjacent intervals, each with a fuzzy mem-
bership value [21], [22]. However, this logic lacked common
temporal operators such as “until” and “next.” Thiele proposed
a modal temporal logic on the integer time domain [23]. It pro-
vided the usual temporal operators, including “always,” “even-
tually,” and “until.” However, its temporal model was defined
on a discrete time domain, hence temporal uncertainty was not
easy to represent. A number of other studies have incorporated
a representation of uncertain temporal information into a log-
ical framework. For example, van Le proposed model-theoretic
semantics for fuzzy event simulation [24], Bae proposed fuzzy
duration logic and used it to analyze a design of the software
system for a nuclear power plant [19], and Dubois reified pos-
sibilistic logic (a type of multivalued logic distinct from fuzzy
logic) [25].

III. Fuzzy LINEAR TEMPORAL LoGIC (FLTL)

Before introducing FBTL, we first consider its linear version,
FLTL. The version of FLTL described below is the revised for-
malism introduced in our previous paper [1]. FLTL is a fuzzy
modal temporal logic defined on a single, 1-D time domain. In
contrast, FBTL can include many “paths” of such time domains.
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Fig. 1. Typical fuzzy set x, whose membership function .. (¢) is defined on 1"
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Fig. 2. Membership functions of two adjacent fuzzy temporal events and a
fuzzy temporal state.

A. Definition of FLTL

The temporal model of FLTL resembles that of PLTL inas-
much as it is an absolute and linear time model; however, PLTL is
based on a discrete temporal model whereas the temporal model
of FLTL is continuous. On this continuous time domain 7, fuzzy
temporal events are defined as fuzzy numbers. A fuzzy number
is a fuzzy set, which is defined by its membership function. For
example, Fig. 1 shows a fuzzy number z defined on the time
domain T In this plot, the membership function pu, (¢) deter-
mines the possibility distribution of . A fuzzy number is a fuzzy
set whose membership function is convex and normalized, i.e.,
max /i, (t) = 1. We denote a continuous fuzzy set  definedon T’
asx = [ p,(t)/t,t € T.This means thata continuous member-
ship function of  is defined on the domain of t € T'. In the case of
a discrete membership function, itis denoted as x = ) pu.(¢)/t.

In the case of a fuzzy temporal event e, its membership func-
tion p.(t) gives the possibility of the event occurring at time
t. Each fuzzy temporal state is defined as a half-open interval
between two neighboring events. In Fig. 2, a fuzzy state s,
is defined as the half-open interval [e,, ¢;) between the fuzzy
events e, and ep. Since it is a half-open interval, i, (¢) reaches
its peak with ., (t) and after a while reaches O just as ., (t)
reaches 1. In other words, for t, <t < tp, s, (t) = 1—pie, (2).
Now let us define the FLTL model, which consists of fuzzy
events and states as outlined below.

Definition 1: The model of FLTL is a tuple M =
(T,E,S,P), where

o T is the time domain, R*;

* E is the set of fuzzy events, E = {ele = [ p.(t)/t,t €
T}, where e is convex and normalized;

* S is the set of fuzzy temporal states, each of which is a
half-open interval between two fuzzy events S = {s|s =
[ei,ef),ei,e5 € EY;
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e P is the set of fuzzy propositions, with truth values for
each state. P = {plp = > pp(s)/s,s € S}.

|

An FLTL formula consists of atomic propositions in P, log-

ical operators, and temporal operators. The logical operators in-

clude V (logical or), A (logical and), and — (logical negation),

and the temporal operators include U (until) and X (delay).

Now let us define the syntax of FLTL.

Definition 2: With respect to an FLTL model M, a well-

formed FLTL formula is defined inductively as follows:

e p € P is a well-formed formula (wff);
e if p and g are wffs, then —p and p A ¢ are also wffs;
e if p and q are wffs, then pUyq is also a wff;
* if p is a wff, then X rqp is also a wff, where R € {<,>
,=,<,>},and d is a normalized fuzzy duration, d € R™.
|
The temporal operator X takes the truth value of the fol-
lowing formula after a time duration d. The duration d € R+
can be a fuzzy duration or a crisp duration. The expression X _4
means “after exactly d;” X .4 represents “before d has passed;”
and X4 is “after d has passed.” The temporal operator U is the
common “until” operator. Hence pUgq means “p is true until ¢
is true.” The shorthand notations customarily used in PLTL can
also be used in FLTL. For example

pV g ==(=pA-q), D
Fp =trueUp 2)

where F' means “sometimes” or “eventually.” From this oper-
ator, another operator G can be defined as

Gp=-F-p 3)

which means “always.” We assume the priority among the oper-
ators to be the same as that given in [2]. Highest binding power
is given to the temporal operators F and G followed by X and
U. The logical operator — is next, followed by A and then V.

B. Interpretation of FLTL

Now let us define the truth value of a given FLTL formula.
Since the interpretation of an FLTL formula varies over time,
we denote the truth value of a formula p at time ¢ according to
the model M as vyp(t).

Definition 3: For a model M, the truth value of an FLTL
formula p at time ¢, varp(t), is defined inductively as

if peP,vpyp(t)

=sup min(pp(s), ps(t)); 4)
seS

var—p(t)
=1 —wvnp(t); 5

vampAq(t)
=min(vamp(t), varq(t)); (6)

vapUq(t)

=max(varq(t), sup inf

t<tmt§tn<tmmm('/1”p( )svarq(tm)));

(N
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Fig. 3. Truth value change of an FLTL atomic proposition p.

v X pap(t)

= sup min(pg(tq, t + d), varp(ta)). (8)
tg>t

|

The function pr(a,b) in (8) is the satisfaction function on a
continuous domain (SFC) S(a R b) proposed by Lee [26] with
respect to the comparison operator R. The notation is changed
to prevent confusion with S in the model M.

The interpretation of FLTL is similar to that of the fuzzy tem-
poral logic of Thiele [23], except FLTL is defined on a con-
tinuous time domain. The truth value of each atomic propo-
sition is determined by the set P, with respect to the fuzzy
temporal states. The membership value of each state is deter-
mined by s € S at a particular time 7, as in Fig. 2. The truth
and membership values are composed by sup-min composition
to create the truth value of an atomic proposition. In Fig. 3,
the truth value vp,p(t) of an atomic proposition p is depicted.
This figure shows how vy p(t) changes given u,(so) = 0.3,
pp(Sa) = 0.8, p1,(sp) = 0 and p,(s.) = 1. Since a state is a
half-open interval between two events, by sup-min composition
varp(t) changes just before each event boundary. For example,
ps, (£) = 1 — pe, (t) for t, < ¢ < tp, and since pe, (1) < 0.2
even after t,,, varp(t) maintains a value of 0.8. Soon after, how-
ever, vpp(t) goes to 0 as fie, (t) rises to 1 before ¢, Combining
the truth values of these propositions with operators, we can de-
scribe the properties of the system at each temporal state.

Logical operators such as = and A follow the usual fuzzy
logic definitions. The “until” operator is interpreted as sup-inf
composition for every possible “meet” time point ¢,,, where for-
mulae p and ¢ meet. This operator U is a strong until operator.
Unless there is a time point ¢,,, at which va;q(t,,) > 0, vppUgq
always yields 0. A weak unt1l operator U,, can be defined as
pUwq = pUq V Gp.

The “delay” operator X in (8) combines the truth value of
the subformula at time ¢4 > ¢ with pg(tq,t + d), just as the
truth value of an atomic proposition is interpreted by reference
to p15(t). SFC g compares a crisp value ¢4 with a (possibly)
fuzzy value ¢ + d and the result is in [0, 1]. For example, Fig. 4
shows the values of vy, X_4p(a) and vy, X< gp(a) for a given
truth value vy, p(t). Since d is a positive crisp value in this case,
p=(ta,t+d)in (8)is 1 iffty = t+d, and hence vy X_ap(a) =
vyp(a + d). On the other hand, since ps (tq,a + d) = 1 iff
ta > a+ d, vy Xsap(a) takes the supreme value of vyrp(ta)
with respect to t4 > a + d, which is also represented in the
figure.
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VM =d P(a)
Vu P(t)
Vu P(t) Vu >dp(a)
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Fig. 4. Interpretation of the temporal operator X.

C. FLTL and PLTL

FLTL is a fuzzy generalization of PLTL. Moreover, as will
be shown below, FLTL is more expressive than PLTL. We use
the notation employed in [2] for describing PLTL models and
formulae.

A PLTL model is a tuple M =

¢ S is a set of states;

e 1 : N — S is an infinite sequence of states;

* L : S — Powerset(P) is a labeling of each state for
which the set of atomic propositions in P is true.

When a PLTL model M satisfies a formula p we denote this
as M | p, and otherwise we write M [~ p. A suffix of sequence
x starting from the i-th state is denoted as . Now we show that
an FLTL model can represent a PLTL model.

Theorem 1: The FLTL model subsumes the PLTL model.

Proof: A PLTL model M = (S, z, L) can be represented
by the FLTL model M’ = (T', E’, S’, P’) in which

(S,xz, L) where

T =Rt )
={e;|l1 <i<n,e; =i} (10)
S"=S,s; = lei,eir1),1 >0 (11)
P ={plpy(s) =1iff p € L(s)}. (12)
||

With respect to M, a PLTL formula p can be translated to an
FLTL formula p’ by substituting X with X_ . To show that FLTL
subsumes PLTL, we note that, fori = [¢], 1/1\/[/ '(t) equals 1 iff
x" = p, and equals 0 otherwise. When this is satisfied, we say
that p’ is equivalent to p. Below we show by induction that an
FLTL formula p’ is equivalent to the PLTL formula p.

Theorem 2: An FLTL formula p’ that is translated from the
PLTL formula p is equivalent to p with respect to the model M’
that represents the PLTL model M.

Proof:
e If p’ € P, from (4), uy(s) = 1iff p € L(s;), and
ps(t) = 1iff [¢t| = 4. Hence, vapp(t) = 1iffz° = p
 If FLTL formulae p’ and ¢’ are equivalent to PLTL for-
mulae p and ¢, respectively, it is clear from (5) and (6) that
—-p’ and p’ A ¢’ are equivalent to —p and p A g, respectively.
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Fig. 5. CTL* temporal model.

e If2' = pUgq, 35 > i, 27 | qand Vk,k < j implies
z® = p.If j > i, from (7), for t,,, = j, vapp'Uq' (1) = 1;
If j = i, then ' |= ¢/, and hence vy ¢'(t) = 1, which
makes vy p'Uq/(t) = 1. And if 2° [~ pUq, either G—q
or Vj such that 2/ |= g, there exists k,k < j such that
o B~ p. Hence, likewise for the true case, v3,p'U¢/(t) =
0. On the other hand, if v, p'Uq’ (t) = 1, there exists a t,,
at which the value of the expression is maximized. Since
vard (b)) = vard (b), o j = [tn), a0 = pUg.
Likewise, if vpp'Uq'(t) = 0, 2* I~ pUgq.
e Tt is clear that X_;p’ is equivalent to Xp, since from (8),
[L:(td7t + 1) =1 ifftd =t+ 1
Therefore we can conclude that the FLTL formula p’ is equiv-
alent to the PLTL formula p. [ ]
Given that FLTL can represent the PLTL model and formula,
and can additionally represent temporal and logical uncertainty,
we conclude that FLTL is more expressive than PLTL.

IV. Fuzzy BRANCHING TEMPORAL LoGIC: FBTL

Although FLTL can represent fuzzy events and states, it
cannot describe a branching time model. To overcome this
shortcoming, we herein develop FBTL. The temporal model
of FBTL has the same fuzzy events and states as FLTL, but,
in contrast to FLTL, the relationship among events and states
is not a total order. In FBTL, the order relation is defined as a
directed graph, as is the case in the temporal model of CTL*.
Similar to PLTL, the boolean value of each proposition in the
directed graph of CTL* changes according to the state. This
graph can be expanded to a tree, as shown in Fig. 5. In this
figure, a graph with three nodes a, b and c is transformed into
a tree.

A. Definition of FBTL

The model of FBTL is a graph similar to the CTL* model.
But in contrast to the CTL* model, each arc in the FBTL graph
represents a transition between states due to the occurrence of an
associated fuzzy event. Because there are many possible paths to
follow, the temporal possibility distribution of each event is not
fixed on an absolute time scale. These distributions are defined
on a relative time domain, 7. We define the model of FBTL as
follows.

Definition 4: The model
(r,E,S, P, A, B), in which

e 7 is the relative time domain, 7 = RT;
* E is the set of fuzzy events, E = {e|e = [ p.(t)/t,t €
7}, where e is convex and normalized;

of FBTL 1is a tuple
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e S is the set of states, S = sg, $1, 82, .. .;

e P is the set of fuzzy propositions P =
S ip(s)/s,5 € Sk

e A C S x Sisthe set of directed arcs between two states;

* B : A — F is the mapping associating each arc with an
event, Va,b € A, B(a) # B(b) if a and b have the same
originating state.

{plp =

|

Although the name of each state is defined in the model,
the temporal possibility distributions of the states are yet to
be determined. The state-proposition relationship is fixed, but
the state-time relationship may vary. In fact, a state s can have
different temporal possibility distributions for the same set of
proposition values. The system starts in the initial state sy and
changes its state when one of the possible events occurs, that is,
when it follows one of the outgoing arcs of the current state.

We now define the syntax of the FBTL formula. Similar to
CTL*, there are two types of FBTL formula, known as state
formulae and path formulae. State formulae are the legitimate
FBTL formulae, and path formulae are subformulae that define
the operators applicable on a determined path. Path formulae
define the temporal operators used in FLTL, U and X. State
formulae introduce new operators, EE and A, which mean “at
least in one path” and “for all paths,” respectively.

Definition 5: Fuzzy Branching Temporal Logic (FBTL) has
path formulae and state formulae defined inductively as follows.
The state formula is defined as

e if p € P, p is a state formula;

* if p and ¢ are state formulae, then —p and p A q are also
state formulae;

e if p is a path formula, then Ep and Aq are state formulae.

And the path formula is defined as

* each state formula is also a path formula;

* if p and q are path formulae, then —p and p A q are also
path formulae;

* if p and ¢ are path formulae, then pUyq is also a path for-
mula;

* if p is a path formula, then X 4p is also a path formula,
where R € {<,>,=,<, >}, and d is a normalized fuzzy
duration on T;

and the state formulae are the well-formed formula of FBTL.

|

Operator priority in FBTL is the same as in FLTL, except E
and A have the highest binding.

B. Interpretation of FBTL

Because the temporal possibility distributions of the events
are defined on a relative time domain, we must map the events
to an absolute time domain before the truth value of an FBTL
formula is determined. This is called event mapping. The first
step in event mapping is to establish the sequence of the states.
From this sequence and the set A, B in the FBTL model, we can
determine the starting and finishing events of each state in the
sequence. A fullpath is the sequence of mapped states, which
is a tuple s = (s,t;,e;,ef), where s € S is the name of the
state, t; € 7T is the time at which the state is initiated, and
e;,ey € I are the initiating and finishing events for the state,
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Fig. 6. Mapping events to an absolute time domain.

respectively. To map a state to the absolute time domain 7', we
first map events e;, e to T'. Let us denote the mapped events as
el e’f. Then

e,'L- =e; + t; (13)
s =ef + €. (14)

For example, in Fig. 6, while e; is transposed right by a crisp
t; value (signified by a;), ey is moved right by the amount of
e} and increased its uncertainty, since e is a fuzzy value. Let
us denote ¢; for state s as ¢;(s). Then, for the initial state sg,
t:(s0) = 0, and for the following states s;, t;(s;) = e’f(si,l),
where ey (s) is the finishing event of state s. The possibility
distribution of the mapped state s’ on the absolute time domain
T is defined as the fuzzy half-open time interval [e,, e}). The
sequence of the mapped states makes a fullpath. For the initial
state, which has no starting event, we assume an initial event
that occurs at time 0.

In some cases, the first part of a fullpath is sufficient to in-
terpret a formula, which is called the prefix of a fullpath. The
prefix x.s,, of a (possibly infinite) fullpath x = s¢, s1,s2...1s
a finite subsequence sg, s1, . . . , Sn. The possibility of a prefix is
defined as y,.s, = inf] c supps,i=1,2,...,n.

Like the syntax definition, the interpretation of an FBTL for-
mula is also defined in two parts: a state formula and a path for-
mula. As defined in Section IV-A, a well-formed FBTL formula
is a state formula, which may contain path formulae as subfor-
mulae. From the model of FBTL, a state formula is defined on a
state, and a path formula is defined on a fullpath. The interpreta-
tion starts from sg € S, and the starting state or fullpath of each
subformula must be determined to interpret the subformulae. To
represent this, the truth value of a state formula p at time ¢ with
respect to the model M on state s is denoted v sp(t), whereas
the truth value of a path formula on path x is denoted vy p(t).

Definition 6: For a model M, the truth value of an FBTL
formula is defined inductively as follows. For the state formula

if p P,
var,sp(t) =min(pp(s), ps(t)) (15)
Uas—p(t) =1 — var sp(t) (16)
var,sp A q(t)=min(var sp(t), var,sq(t)) (17)

var,sEp(t) =sup var .p(t); where x starts with s (18)
Vx

var,sAp(t) = i\?f v p(t)where z starts with s.  (19)
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And for the path formula

Unt,2p(t)
= sup min(var,sp(t), fa.s; ps(t))
s€x
when p is a state formula
v, —p(t)
=1 —var.p(t)
var,zpAq(t)
=min(vp p(t), Var.q(t))
va,pUq(t)

=max(varq(t),sup _inf min(var.p(tn),vareq(tm)
’ 1<ty 1<t <tm

(20)

21

(22)

(23)
va,» X Rap(t)
= sup min(pg(tq, t + d), var,ep(ta))- (24)
tg>t
[ |

Once a path is determined, the interpretation of FBTL be-
comes very similar to that of FLTL. However, unlike FLTL,
FBTL requires two parameters (s and ¢) to determine the cur-
rent state of the modeled system. The parameter s represents
the current state of the system, and is used to determine the full-
path. The parameter ¢ specifies the time point at which the truth
value of a formula is to be evaluated. For example, (20) takes
the sup-min composition for every state in the current fullpath
x and the state formula takes the minimum of p5(t); this process
leads eventually to the selection of the s with the highest p(t).

Although FBTL syntax and interpretation subsumes FLTL,
in general it is impossible to represent an FLTL model with
an FBTL model. This is because the fuzzy addition operator is
used in mapping the events. In contrast to the calculus of crisp
numbers, the fact that fuzzy numbers «a, b and ¢ obey the rela-
tion a + b = c¢ does not generally mean that ¢ — b = a holds
[27]. Hence, given an FLTL model, generally it is not possible
to construct a FBTL model that represents the same fullpath. Of
course, it is possible to subsume a class of the FLTL (especially
PLTL) with FBTL.

C. FBTL and CTL*

In this section it is shown that FBTL is more expressive than
CTL*. From a CTL* model and formula, it is possible to build
an FBTL model and formula with an equivalent interpretation.
In the description of CTL* presented here, we use the notation
given in [2]. A model of CTL* is M = (S, R, L) where

* S is the set of states;

* R is a total binary relation, R C S x S;

* L : S — Powerset(P) is a labeling that associates with
each state s an interpretation L(s) of all atomic proposi-
tion symbols at state s.

The proof that a CTL* model can be represented by an FBTL
model is similar to proof presented above that a PLTL model
can be represented by an FLTL model (Theorem 1).

Theorem 3: A CTL* model can be represented by an FBTL
model.
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Proof: For a CTL* model M = (S, R, L), we create an
FBTL model M’ = (1, E,S’, P, A, B) in which

e 7 =RH
* £ ={eg,e1,...,6,} Wheren = |R|, fte,(1) = 1 and 0

otherwise, for 0 < 7 < n;

e 5 =5,
* P ={plup(s) =1iff p € L(s)};
e A=R;

* B maps each element of A to F.
|

In M’, the possibility distribution of each mapped state is a
crisp interval of unit length. Let us denote the interval of state
s as [ti(s),tr(s)). We also introduce the notation that for ¢ €
[ti(s), t£(s)). s = sn(2).

A CTL* formula p is translated to an FBTL formula p’ by
substituting X for X_;, in the same manner as a PLTL formula
is translated to an FLTL formula in Section III-C. An FBTL
state formula p’ is equivalent to a CTL* state formula p when
var,sp'(ti(s)) is 1 iff M,s = p, and O otherwise. An FBTL
path formula p’ is equivalent to a CTL* path formula p when
var op'(t) is 1iff M,z |= p, and 0 otherwise.

We now show by induction that, for a CTL* formula p, the
translated FBTL formula p’ is equivalent to p.

Theorem 4: FBTL formula p’ translated from a CTL* for-
mula p is equivalent with respect to the model M’ representing
the CTL* model M.

Proof:

» If p’ € Pvap o0/ (ti(s)) = pp(s), which is equivalent
to p.

e If FBTL formulae p’ and ¢’ are equivalent to CTL* for-
mulae p and ¢, respectively, then by (17) and (22), it is
trivial to show that p’ A ¢’ is equivalent to p A q.

* If an FBTL path formula p’ is equivalent to p, then by (18)
and (19), it is clear that Ep’ and Ap’ are equivalent to Ep
and Ap, respectively.

e If an FBTL path formula p’ is also a state formula, since
ps(t) = 1iff t € [ti(s),ts(s)) and O otherwise, from
(20), varr o0 (t) = varr s, 0P’ (t). Hence, var, o' (t) is
1 iff M.,z = p and 0 otherwise, which is equivalent to
the CTL* formula p.

 If FBTL path formulae p’ and ¢’ are equivalent to CTL*
path formulae p and ¢, respectively, if z* E pUq, 35 >
i,z | q and Vk,k < j implies 2% &= p. If j > i,
from (23), for t,, = j, var .p'U¢'(t) = 1;if j = 4,
then ' = ¢/, and hence vy ,q'(t) = 1, which makes
var 2p'Uq'(t) = 1. And if z° [ pUgq, either G—q or Vj
such that 27 |= g, there exists k, k < j such that z* = p.
Hence, likewise for the true case, var .p'Uqg/'(t) = 0.
On the other hand, if vy ,p'Uqg'(t) = 1, there exists
a t,, that maximizes the value of the expression. Since
a2 q ([tm]) = varr ¢ (tm) by the construction of M,
for j = [tm], 2* | pUgq. Likewise, if var .p'Uq (t) =
0, x' [~ pUgq. Hence, p'Ugq’ is equivalent to pUg.

e If an FBTL formula p’ is equivalent to a CTL* formula p,
it is clear that X_;p’ is equivalent to Xp, since from (24),
[L:(td7t + 1) =1lifft; =t+ 1.
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Therefore we can conclude that the FBTL formula p’ is equiv-
alent to the CTL* formula p. ]

Hence, given that FBTL can represent a CTL* model and for-
mula, and can additionally represent temporal and logical uncer-
tainty, we conclude that FBTL is more expressive than CTL*.

D. Deductive System for FBTL

A classical deductive system for a temporal logic consists of a
set of axiom schemes and inference rules. A formula p is said to
be provable, denoted - p, if the deductive process can show that
p follows from the axioms and rules. CTL, which is a subset of
CTL*, has a complete deductive system [2]. However it cannot
be applied to FBTL directly, mainly due to differences between
classical and fuzzy logic rather than to differences between the
temporal models.

The deductive system for fuzzy propositional logic is defined
in [28], [29] and [30]. A signed fuzzy formula is a tuple (p, v)
where p is a formula, and v € [0, 1] is an assigned truth value.
This means that for any interpretation, p is true at least to the
degree v. A Fuzzy Deductive System is apair 7 = (a, R) where
a is a fuzzy set of fuzzy logical axioms, and R is a set of fuzzy
inference rules. A fuzzy inference rule is a pair r = (ry,7,)
where r¢ is a syntactical component that operates on formulae,
and r, is a valuation component that operates on truth values to
calculate how the conclusion depends on the truth values of the
premises. A rule r is usually written as

f17f27"'7fn Vi, V2, Vn
Tf(fl7f27 cee 7fn)7 TI/(V17V27 s Vn)
This expression means that if the formulae f1, fo,..., fn
are known to be true at least to the degree vi,vo,...,V,,

respectively, then r¢(f1, f2,..., fn) is true at least to the
degree r,(v1,v2,...,y). A fuzzy inference rule is sound if
VMTf Z rv(’ﬁ%fl; l/]\/[f27 N I/]ufn). In the case of FBTL,
the valuation components v; and r, are functions of t € T.
However, since the definition of assigned truth value is that the
formula is at least true to the degree for any interpretation on
any temporal model, ¢ can be omitted for notational simplicity.

For FBTL, all axioms for fuzzy propositional logic hold as
described in [30]. Additionally, some axioms follow from the
definition of FBTL operators

Fp =trueUp (25)
Gp =-F-p (26)
Ap =—-E-p 27
E(pVq) =EpV Eq (28)
F(pVq)=FpV Fq. (29)

Axioms (25) and (26) are from their definitions, (2) and (3).
Axiom (27) follows from (19) and (18). Axiom (28) follows
from (18), and axiom (29) follows from (25) and (23), which
implies

v, Fp(t) = sup varzp(tm). (30)

to >t
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From the axioms above, other equivalences can be drawn.
From (26) and axiom (29), we can write

G(pAgq)=GpAGg. (31)
And from axioms (27) and (28), we can write
A(pAnqg)=ApAAg. (32)

The inference rules for fuzzy propositional logic can be ap-
plied, as the Fuzzy Modus Ponens (R s p) and the Rule of Con-
Jjunction (R¢) [30]

plp—q _ab

q " min(a, b)
Diq a,b
‘pAq min(a,b)’

Rryp - (33)

Re (34)

In addition, there are four kinds of Generalization Rule

P a

Rer : el 35
GR AGp a (35)
Gp a
RGRF:F—fj,E (36)
Ap a
RGRE:E—i,E (37)
p a
R : L= 38
GRX Xpap' a (38)

Rgr is adopted from the deductive system of CTL. This rule
is sound by the definition of the assigned truth value, which
states that p is at least true to the degree a for any time point
of any fullpath. Rgrp follows from (30), which states implies
that vy . Fp(t) > v Gp(t). Rgre follows from (19) and
(18), which implies that vas s Ap(t) < var sEp(t). For Rgrx,
R is a comparison operator, which is the same as the one in (8).

The soundness of other rules and axioms can also be shown.
Additional rules such as the Rule of Disjunction Rp and Rule
of Simplification Rgs can be derived from R¢

P q ab
Rp : ,—— 39
b pV ¢ max(a,b) (39)
A\
Rs:u7g (40)
p a

Theorem 5: The inference rules in (33)—(40) are sound.
Proof:

* For two fuzzy formulae p and ¢ with minimum truth values
p and pig, respectively, (p — ¢) has minimum truth value
min(1 — p,, piy). Now the conclusion of R/ p has truth
value of min (g, min(1 — p,, p14)), certainly less than fi,.
Hence, Rrasp 18 sound.

e R is trivial.

* If, by definition of the FBTL deductive system, an FBTL
formula p has minimum truth value a regardless of the
model, AGp of course has the same truth value a. Hence
Rgr is sound.

* By (26) and (30), for any path FBTL formula p,
v, Fp(t) > var. Gp(t) regardless of M and ¢. Hence,
RgrF is sound.
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* Similarly, by (18) and (19), for any FBTL formula p,
vu,sEq(t) > varsAq(t) regardless of M and ¢. Hence,
RgrE i1s sound.

* Similar to Rgg, if p has minimum truth value a regard-
less of model, from (24) and the fact that d is normalized,
v,z X Rap > a regardless of comparison operator 12 and
delay value d. Hence Rgrx is sound.

* From R and the fact that p V ¢ = —(—p A =q), Rp is
sound.

* From R¢, Ry is trivially sound.

Hence, the inference rules in (33)—(40) are sound. |

Although this deductive system is not yet complete, it can be
applied to prove simple theorems and formulae.

For example, the theorem

a,b

" min(a, b)

p— q,AGp
AGq

can be proved as below. First we develop a trivial rule

(p—a)Apa (41)
p —qaby Rs (42)
p a from Eq. (41), by Rg (43)
q a from Egs. (42) and (43), by Rpyp.  (44)

Now we can show that

p—q,AGp a,b
AG(p —q),AGp a,bby Rgr
AG(p —q) N AGp min(a,b) by Rpc
AG((p —q) A p) min(a,b)by Egs. (32) and (31)
AGgq min(a,b) by Egs. (41) — (44).

As stated above, this deductive system is not yet complete,
although it covers all the operators used in FBTL: for example,
EFp A (p — ¢q) — EFq cannot be proven by this deductive
system.

A complete deductive system for CTL is introduced in [2], but
additional complexity of CTL* makes it difficult to build a com-
plete deductive system. Since FBTL subsumes CTL*, it is sup-
posed to be a difficult task to build a complete deductive system
for FBTL. To find a complete deductive system for FBTL and
prove its completeness, we suspect that more understanding of
the model of FBTL is needed. Especially, the solution to the sat-
isfiability testing problem would be helpful, as the completeness
of the CTL deductive system was shown in [2].

V. Fuzzy TIMED JOB SHOP SCHEDULING PROBLEM

To illustrate the usefulness of FBTL, we describe a Fuzzy
Timed Job Shop Scheduling problem within the FBTL
framework. Although this representation does not solve the
scheduling problem itself, it provides an example of the
system modeling and constraint satisfaction analysis. Several
previous studies have considered Fuzzy Job Shop Scheduling
[31]-[33]. The crisp job shop scheduling problem is defined
with exact time parameters; however, this is often not possible
in real-world situations, especially when human factors are
involved. To represent the temporal uncertainties commonly
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Fig. 7. Fuzzy timed job shop problem example.

Itle“ el e2

| | ;
i | T
075 1 125 175 2 2.25

Fig. 8. Fuzzy temporal distributions “about 1 s” and “about 2 s” represented
as fuzzy numbers.

encountered in the real world, a fuzzy job shop scheduling
problem is defined [31]. In this formalism, the processing time
for each job is represented by a fuzzy number rather than a real
number.

The scheduling problem considered here has two jobs to be
completed, as shown in Fig. 7. In this figure, the two jobs are
represented by tokens in a Petri Net. There are two machines to
use, and each job spends different time durations in each ma-
chine. Job 1 spends about 1 s before starting the processing, 2 s
in Machine 1, and about 3 s in Machine 2. Job 2 spends about
2 s before processing, about 3 s in Machine 1, and about 4 s in
Machine 2. Because the durations spent in each machine are un-
certain, the events have fuzzy temporal distributions as depicted
in Fig. 8.

The FBTL model for this problem can be constructed as out-
lined in Fig. 9. Note that this model includes two states in which
the two jobs use the same machine, represented as grey states.
The identification of such forbidden states enables us to express
forbidden conditions in the scheduling requirements explicitly
in FBTL. In Fig. 9, each state is labeled as (s1, s2), where s; and
5o are the states of jobs 1 and 2, respectively. Because each job
runs independently of the other and each job has 4 states, there
are a total of 42 = 16 FBTL states. Note that two grey states
are included in these 16 states. These conflicting states must be
included in the model too, because they have fuzzy time bound-
aries [34]-[38].

Fig. 10. Selected fullpath.

7]
t ¢ € € & s € Mind.enss(t)
L /\ I/I\I /\ 1 N |
I S S S S B B s r >1
1 3 5 8 11
Fig. 11.  Fullpath with mapped events.

Each possible schedule will be represented as a fullpath, and
the FBTL model represents every possible schedule. With this
model, scheduling constraints can be expressed in terms of the
FBTL formulae. For example, the constraint that one machine
shouldn’t be occupied by more than one job can be specified as
a path formula G—(p V q), provided that u(71,a71)(p) = 1 and
(a2, 02)(q) = 1. Hence the wff is AG—(pV ¢), which applies
the constraint to every schedule. On the other hand, the deadline
condition can be expressed as X _4p; with the deadline d and
[(end,end)(P¢) = 1. Since this is a path formula, a well-formed
formula is EX . 4p;,, which means there is at least one possible
schedule.

For example, let us consider the path marked in grey in
Fig. 10. The state (end,end) is reached at about 15 s. The
temporal distribution of this path is depicted in Fig. 11. Hence
for d > 15, vas (start,start) EX<apt(0) is evaluated to be
1. Meanwhile, when d = 14 as in Fig. 12, it will be less
than 1 indicating that it is not fully satisfied, although not
totally false; this represents the flexible due-date. Through
such calculations, FBTL can be used to control the degree of
satisfaction of a given set of constraints such as flexible due
dates and termination conditions.
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vM,xpt (t)

Fig. 12. Fullpath in Fig. 11, magnified around 15 s.

The job shop scheduling example presented above demon-
strates the ability of FBTL to model systems with multiple exe-
cution paths. Compared to CTL*, FBTL has the advantage that it
can represent temporal uncertainty. Moreover, the degree of sat-
isfaction of the constraints on a system can be represented as the
truth value of FBTL formula. Furthermore, although an FLTL
formula represents the temporal properties of a single schedule
solution, FBTL can describe the temporal properties of multiple
schedules.

VI. CONCLUSION

In this paper, fuzzy branching temporal logic (FBTL) is pro-
posed. This temporal logic can model dynamic systems with
uncertain temporal information and a branching time model. It
has fuzzy events and fuzzy states in its temporal model, and is
able to express fuzzy logical formulae and fuzzy temporal rela-
tionships among those formulae. In addition it subsumes CTL*,
which has previously been used to model state-based concurrent
systems. A deductive system for FBTL is also discussed.

FBTL is applicable to systems in which the durations of, or
intervals between events are not known exactly. To demonstrate
the utility of the proposed method, the temporal model of a fuzzy
timed job shop problem was constructed and the formulae for
various conditions were derived. This example clearly demon-
strated how FBTL enables us to control the satisfaction degree
for each constraint under uncertain due dates and termination
conditions.

Currently we are developing an FBTL-based analysis frame-
work for fuzzy timed Statecharts. As further works, an algorithm
for testing satisfiability of a formula is considered.
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